
1

A STRUCTURED APPROACH TO
CLUSTER LOCATION IN
HIGH DIMENSIONAL
FEATURE SPACES.

A thesis

submitted to the

University of London

for the degree of Doctor of Philosophy

by

PHILIP JAMES NAYLOR

Department of Physics

King’s College London

September 1992

Resubmitted – June 1994

2

3

Abstract

After a survey of existing cluster analysis algorithms, a new technique

is introduced which seeks to break the problem down into a series of, better

defined, sub-goals.

Possible methods for attaining these sub-goals are described, and dis-

cussed, and then the technique is applied to the segmentation of multi-spectral

imagery, via the location of clusters in cooccurrence matrices.

Finally, the performance of the new technique is compared with that of

some existing algorithms, and conclusions are drawn as to its usefulness, both

in terms of speed and the quality of its results.

4

5

Contents

Previous Study 21

Declaration 23

Acknowledgements 25

Scope of this Work 29

1 Introduction to Cluster Analysis 31

1.1 Constructing a feature space 31

1.2 The aims of cluster analysis 32

1.3 The problems associated with cluster analysis 34

1.4 Existing techniques 36

1.5 The problem with existing techniques 41

1.6 A better approach to the problem 42

2 Location of Peaks in One Dimension 55

2.1 Reducing the number of dimensions 55

2.2 The location of extrema in hi(x) 56

2.3 Adaptive deconvolution of probability distribution functions 68

3 The Linking of Peaks in N–dimensional Feature Spaces 81

3.1 Labelling of combinations 86

6

3.2 Discarding voids 88

3.3 Determination of local maximality 90

3.4 The ‘IKOC’ algorithm 95

4 Multi-spectral Image Segmentation 99

4.1 Multi-spectral images 99

4.2 The information contained in multi-spectral images 101

4.3 The purpose of segmenting multi-spectral images 102

4.4 Processing of multi-spectral images prior to segmentation 103

4.5 The use of cooccurrence matrices, and edge detection 117

4.6 Results using real images 141

4.7 The coding of the segmentation algorithm 148

5 Analysis of Remotely Sensed Imagery 157

5.1 Geological & mineralogical surveying applications 157

5.1.1 The requirements 157

5.1.2 The role of remotely sensed imagery 157

5.1.3 The problems associated with the use of remotely sensed

imagery 158

5.1.4 The information contained in the images 158

5.1.5 The role of automated analysis 161

5.2 Land use & environmental monitoring applications 161

5.2.1 The requirements 161

5.2.2 The role of remotely sensed imagery 162

5.2.3 The problems associated with the use of remotely sensed

imagery 163

7

5.2.4 The information contained in the images 163

5.2.5 The role of automated analysis 163

5.3 Results of image segmentations 164

6 Image Compression 181

6.1 The requirements 181

6.2 Existing techniques 182

6.3 Use of the new segmentation technique 197

6.4 Results 199

6.5 Future possibilities 200

7 Comparison with existing techniques 209

7.1 Comparison with respect to speed 213

7.2 Comparison with respect to quality 225

8 Conclusions and Future Work 245

Appendix A : The FORTRAN source code for the image segmentation

program 251

COOCSEG 254

DATAIN 259

NOLIGHT 263

MATRIX INV 268

FILTDEF 271

CONVOLVE 278

GLCOOC 282

8

DIAG 287

HSTANAL 291

SIGMA 296

SORT 300

FINDPK 303

SORT3 320

SORT4 323

SEGMENT 327

SORT2 336

DATAOUT 339

Appendix B : The FORTRAN source code for the implementations of

Forgy’s method, and MacQueen’s k–means 345

COMPARE 346

CLASSIFY (Forgy’s method) 349

CLASSIFY (MacQueen’s k–means) 353

References 357

9

Figures

1.1 Density distribution of 106 data points 33

1.2 Density distribution of 103 data points 33

1.3 Density of data points in BBC testcard image, viewed down the Red

axis 46

1.4 Density of data points in BBC testcard image, viewed down the Blue

axis 47

1.5 Density of data points in BBC testcard image, viewed down the Green

axis 48

1.6 Superimposition of clusters, leading to the multiple use of a local

maximum during crossreferencing 50

1.7 Superimposition of clusters, leading to the failure of crossreferencing

of the local maxima locations 51

1.8 Local maxima location in a two dimensional feature space, by gradual

thresholding 52

1.9 One dimensional views of the density distribution of the BBC testcard

dataset 53

2.1 Finite difference analysis, for widely spaced peaks, with varying

degrees of noise 59

10

2.2 Finite difference analysis, for moderately spaced peaks, with varying

degrees of noise 60

2.3 Finite difference analysis, for closely spaced peaks, with varying

degrees of noise 61

2.4 Fourier differentiation analysis, for widely spaced peaks, with varying

degrees of noise 62

2.5 Fourier differentiation analysis, for moderately spaced peaks, with

varying degrees of noise 63

2.6 Fourier differentiation analysis, for closely spaced peaks, with varying

degrees of noise 64

2.7 Haddon’s multi-resolution analysis, for widely spaced peaks, with

varying degrees of noise 65

2.8 Haddon’s multi-resolution analysis, for moderately spaced peaks,

with varying degrees of noise 66

2.9 Haddon’s multi-resolution analysis, for closely spaced peaks, with

varying degrees of noise 67

2.10 Two merged peaks, showing a false peak between them, due to

overlap 73

2.11 Deconvolution analysis, for widely spaced peaks, with varying

degrees of noise 76

2.12 Deconvolution analysis, for moderately spaced peaks, with varying

degrees of noise 77

2.13 Deconvolution analysis, for closely spaced peaks, with varying

degrees of noise 78

11

3.1 Cluster centre candidates in BBC testcard dataset, viewed down the

Red axis 82

3.2 Cluster centre candidates in BBC testcard dataset, viewed down the

Blue axis 83

3.3 Cluster centre candidates in BBC testcard dataset, viewed down the

Green axis 84

3.4 Mapping between two dimensional and one dimensional array

element numbers 87

3.5 Possible definitions for the ‘neighbourhood’ of a candidate vector 89

3.6 The number of possible locations a ‘climber’ has to look at in the

steepest ascent algorithm 92

3.7 The movement of the ‘climber’ in the modified steepest ascent

algorithm 93

3.8 Examples of the ‘climber’ getting sidetracked in the modified steepest

ascent algorithm 94

3.9 Idealised example of the operation of the IKOC algorithm 96

4.1 Idealised application of the retinex algorithm to the removal of

lighting effects 106

4.2 Result of removing lighting effects by band ratioing 109

4.3 Result of removing lighting effects by transformation and removal of

intensity component 111

4.4 Result of removing lighting effects from the BBC testcard image 115

4.5 The elements of an ideal cooccurrence matrix 119

12

4.6 Synthetic image, with its cooccurrence matrix 120

4.7 Grey level cooccurrence matrices for band 1, without and with the

removal of lighting effects 123

4.8 Grey level cooccurrence matrices for band 2, without and with the

removal of lighting effects 124

4.9 Grey level cooccurrence matrices for band 3, without and with the

removal of lighting effects 125

4.10 Edge-like and region-like pixel pairings in image space, and their

corresponding contributions to cooccurrence space 126

4.11 Edge profiles, and their corresponding contributions to a

cooccurrence matrix 128

4.12 BBC testcard image, with its cooccurrence matrix 129

4.13 Edge probability function, in cooccurrence space, (8 clusters found

during segmentation), and the resulting edge probability image 131

4.14 Edge probability function, in cooccurrence space, using a 7–point

Spacek filter, (4 clusters found during segmentation), and the

resulting edge probability image 132

4.15 The result of applying Canny’s HYSTER algorithm to the edge

probability image 133

4.16 Combined region segmentation and edge detection using a 5–point

Gaussian filter and a 5–point cubic spline filter 134

4.17 Combined region segmentation and edge detection using a 5–point

Petrou filter and a 5–point Spacek filter 135

13

4.18 Combined region segmentation and edge detection using a 7–point

Gaussian filter and a 7–point cubic spline filter 136

4.19 Combined region segmentation and edge detection using a 7–point

Petrou filter and a 7–point Spacek filter 137

4.20 Combined region segmentation and edge detection using a 9–point

Gaussian filter and a 9–point cubic spline filter 138

4.21 Combined region segmentation and edge detection using a 9–point

Petrou filter and a 9–point Spacek filter 139

4.22 Band, and wedge, shaped high edge probability incursions between

close clusters 140

4.23 Segmentation of the colour BBC testcard image, produced without

smoothing, or lighting effect removal 143

4.24 Segmentation of the colour BBC testcard image, produced with

smoothing, but without lighting effect removal 143

4.25 Segmentation of the colour BBC testcard image, produced without

smoothing, but with lighting effect removal 145

4.26 Segmentation of the colour BBC testcard image, produced with

booth smoothing and lighting effect removal 145

4.27 Edge probability image for the BBC testcard 147

4.28 HYSTER edge map for the BBC testcard 147

5.1 Pre-dawn thermal infra-red image interpretation 160

5.2 False colour composite of LANDSAT TM scene 165

5.3 Segmentation of LANDSAT TM scene 165

14

5.4 False colour composite of Blewbury ATM scene 169

5.5 Segmentation of Blewbury ATM scene 169

5.6 Blewbury ATM scene, reference data 171

5.7 False colour composite of Churn Farm ATM scene 173

5.8 Segmentation of Churn Farm ATM scene 173

5.9 Churn Farm ATM scene, reference data 175

6.1 A simple 8 by 8 pixel, single band, ‘image’ 182

6.2 Run length encoded version of the image in figure 6.1 183

6.3 Producing the Huffman codes for the run length/token pairs in

figure 6.2 185

6.4 DCT encoding, stage one – split the image into patches 189

6.5 DCT encoding, stage two – form the discrete cosine transform of

the patches 189

6.6 DCT encoding, stage three – scale the values and quantise them 189

6.7 DCT encoding, stage four – discard high frequency information 190

6.8 DCT encoding, stage five – run length encode the data, diagonally 190

6.9 BBC testcard image – original and reconstruction from a DCT based

compression 191

6.10 BBC testcard image reconstructed from DCT based compression,

witha compression ratio of 100:1 192

6.11 Boundary following encoding of the image in figure 6.1 195

15

6.12 Variation of boundary quantities with the number of regions 199

6.13 BBC testcard, original image 201

6.14 BBC testcard, segmented image 201

6.15 BBC testcard, intensity image 203

6.16 BBC testcard, reconstructed image 203

6.17 Lenna, original image 205

6.18 Lenna, reconstructed image 205

7.1 Variation in CPU time used with respect to data set size 215

7.2 Variation in CPU time used with respect to the number of classes 216

7.3 Variation in CPU time used with respect to the number of

dimensions 217

7.4 Variation in CPU time used with respect to data set size, for multiple

iterations of Forgy’s method & MacQueen’s k-means 221

7.5 Variation in CPU time used with respect to the number of classes, for

multiple iterations of Forgy’s method & MacQueen’s k-means 222

7.6 Variation in CPU time used with respect to the number of dimensions,

for multiple iterations of Forgy’s method & MacQueen’s k-means 223

16

17

Tables

1.1 Cluster centre locations inferred from figures 1.3 to 1.5 45

2.1 Peak positions & widths used for peak location tests 58

2.2 Locations of peaks found by deconvolution method, using various

termination thresholds 74

3.1 Example of peak numbers and combination labels 87

4.1 LANDSAT 1, 2, & 3 MSS characteristics 100

4.2 LANDSAT 4, & 5 TM characteristics 100

5.1 Land use types in Blewbury ATM scene 171

5.2 Land use types in Churn Farm ATM scene 175

6.1 Frequency of run length/token pairs in figure 6.2 184

7.1 Details of 1 dimensional; 4 class; 64000 sample data set 210

7.2 Details of 2 dimensional; 4 class; 64000 sample data set 210

7.3 Details of 4 dimensional; 1 class; 64000 sample data set 210

7.4 Details of 4 dimensional; 2 class; 64000 sample data set 211

7.5 Details of 4 dimensional; 4 class; 8000, 16000, 32000, 64000,

128000, & 256000 sample data sets 211

7.6 Details of 4 dimensional; 8 class; 64000 sample data set 211

18

7.7 Details of 4 dimensional; 16 class; 64000 sample data set 212

7.8 Details of 8 dimensional; 4 class; 64000 sample data set 212

7.9 Details of 16 dimensional; 4 class; 64000 sample data set 213

7.10 Cluster centres found in 1 dimensional, 4 class, 64000 sample

data set 226

7.11 Cluster centres found in 2 dimensional, 4 class, 64000 sample

data set 226

7.12 Cluster centres found in 4 dimensional, 1 class, 64000 sample

data set 226

7.13 Cluster centres found in 4 dimensional, 2 class, 64000 sample

data set 227

7.14 Cluster centres found in 4 dimensional, 4 class, 16000 sample

data set 227

7.15 Cluster centres found in 4 dimensional, 4 class, 32000 sample

data set 227

7.16 Cluster centres found in 4 dimensional, 4 class, 64000 sample

data set 228

7.17 Cluster centres found in 4 dimensional, 4 class, 128000 sample

data set 228

7.18 Cluster centres found in 4 dimensional, 4 class, 256000 sample

data set 228

7.19 Cluster centres found in 4 dimensional, 8 class, 64000 sample

data set 229

19

7.20 Cluster centres found in 4 dimensional, 16 class, 64000 sample

data set 230

7.21 Cluster centres found in 8 dimensional, 4 class, 64000 sample

data set 231

7.22 Cluster centres found in 16 dimensional, 4 class, 64000 sample

data set 232

7.23 Hits scored by the various methods, at different permissible margins

of error 233

7.24 Misses scored by the various methods, at different permissible margins

of error 233

20

21

Previous Study & Current Work

The author obtained an Honours degree in Physics with Astrophysics

from King’s College London in 1987.

He then studied for an M.Sc. in Radio Astronomy at the Nuffield Radio

Astronomy Laboratories, University of Manchester. This he obtained in 1988.

In October, of the same year, he returned to King’s College and regis-

tered as a Ph.D. student in the Physics department.

The work for that Ph.D. culminated in the original publication of this

thesis in 1992.

After leaving King’s, the author eventually found employment as an

assistant computer officer in the Faculty of Computer Studies and Mathematics

at the University of the West of England, in Bristol. He has found it hard

enough to make time to revise this thesis for resubmission, let alone do any

new work in the fields of image processing or pattern recognition.

22

23

Declaration

All of the work described in this thesis was performed by the author.

With the exception of the general idea of an adaptive implementation

of the CLEAN deconvolution algorithm, no portion of this thesis has been

submitted in support of an application for another degree, or qualification, of

this, or any other, university, or other institute of learning.

Philip J. Naylor,

29th September 1992.

Revised & resubmitted :

27th June 1994.

Department of Physics,

King’s College,

London.

24

25

Acknowledgements

I wish to thank Professor R.E. Burge and Dr. M. McCabe for making

available the research facilities of the Physics department at King’s College

and the IT unit at BP Research, respectively. And, I gratefully acknowledge

receipt of an SERC ‘Case’ studentship, co-sponsored by British Petroleum.

I wish to thank my supervisor, Dr. J.F. Boyce, for all his help and

guidance over the years.

The airborne multi-spectral imagery, of Blewbury and Churn Farm, was

acquired by the Natural Environment Research Council (NERC). The refer-

ence data planes were compiled at the NERC Unit for Thematic Information

Systems. My thanks to Dr. J.J. Settle, of NUTIS, for making these available.

I also wish to thank Jimmy, for many an amusing anecdote and tol-

erating my working methods; Margaret, and the rest of her group, for their

hospitality at Sunbury; and Professor Burge for his patience whilst I was writ-

ing up.

Thanks relating to the revision and resubmission of this thesis go to

Professor Ken Jukes, Graeme Matthews, and Julia Dawson, of the Faculty of

Computer Studies & Mathematics at the University of the West of England

(Bristol) for allowing me the time, and facilities, to get the work done.

26

Thanks go, as well, (in no particular order) to :

• the image analysis group - Simon, Simon, Simon, Darren, & Chris - for

keeping me amused,

• the ladies of Commonwealth Hall - Caitriona, Suraya, Magda, & Sarah

- for keeping me sane,

• and anyone I’ve ever shared an office with (131, 126, or Q135) - in par-

ticular Shah for the use of ‘phsun’ after my departure.

Finally, thanks to Ruth – for cups of tea, and walks in the country.

27

When work is done as sacred work, unselfishly, with a peaceful

mind, without lust or hate, with no desire for reward, then the

work is pure.

But when work is done with selfish desire, or feeling it is an effort,

or thinking it is a sacrifice, then the work is impure.

And that work which is done with a confused mind, without con-

sidering what may follow, or one’s own powers, or the harm done

to others, or one’s own loss, is the work of darkness.

Bhagavad Gita 18, 23–25.

28

29

Scope of this Work

The original aim of this work was to produce an algorithm which would

take a multi-spectral satellite image of an arid area and, not only differentiate

between but also, identify the different rock types within the scene (limestone,

granite, etc.). This would be done on the basis of the different colours and

textures in the image. Once identified, relationships between the various rock

structures, plus any other relevant information, would be used to locate areas

which might contain petrochemical deposits.

The basis of the work was to be a cooccurrence matrix based segmen-

tation algorithm which had already been implemented for use with black &

white (mono-spectral) images. However, the author’s belief that any pattern

recognition algorithm worth the name should not require any more informa-

tion than that which is contained in the data meant that the extension from

one spectral band to many was far from simple. In fact it required a solution

to the ‘cluster validation problem’ (i.e. the removal of the need to tell the

algorithm how many distinct clusters of data points there are in a data set).

The solution of this problem took up most of the two years for which

funding was available. Although, towards the end, some work was done on

texture analysis, this never reached a stage where it might be satisfactorily

included in this volume. Thus the work, herein described, centres on the

solution of the cluster validation problem, and the application of the resulting

algorithm to the segmentation of images, on the basis of colour only.

30

31

CHAPTER 1
Introduction to Cluster Analysis

An introduction is given to the concept of feature spaces, and cluster

analysis. A review is made of existing cluster analysis techniques, and how they

may be improved on. A new approach is proposed, which involves breaking

the problem down into more manageable pieces.

1.1 Constructing a feature space :

Consider a set of objects, Ω = {ω}, each of which has a set of N quan-

tifiable properties (features), x(ω) = (x1(ω), x2(ω), . . . , xN (ω))ω∈Ω associated

with it. The x(ω) can be treated as N–dimensional vectors, i.e. :

x(ω) = x1(ω)̂ı1 + x2(ω)̂ı2 + . . .+ xN(ω)̂ıN (1.1)

where {ı̂1, ı̂2, . . . , ı̂N} are the, ortho-normal, basis vectors of the coordinate

system.

The x(ω) are then referred to as ‘feature vectors’, which point to loca-

tions within a ‘feature space’.

If Ω is actually a collection of sub-sets {ΩA,ΩB, . . .} each of which

contains objects which are similar, in their properties, to other objects within

the same sub-set, but different from the objects in all the other sub-sets, then

the end points of the feature vectors (the data points) will form clusters in the

feature space.

The probability of a feature vector lying in the range x to x + dx is

32 Chapter 1

p(x)dx. By Bayes’ theorem :

p(x) =
∑

Ωa∈Ω

p(Ωa) p(x|Ωa) (1.2)

where p(Ωa) is the probability of a data point belonging to cluster Ωa; and

p(x|Ωa) is the probability of a data point being at position x in the feature

space, given that it belongs to cluster Ωa.

Ideally the density distribution of the feature vectors will then be given

by:

ρ(x) = M p(x) (1.3)

⇒ ρ(x) = M
∑

Ωa∈Ω

p(Ωa) p(x|Ωa) (1.4)

where M is the total number of feature vectors.

This will only be exactly true in the limit as M tends to infinity. How-

ever, it will be approximately true provided thatM is large enough for the data

to form a reasonably representative sample of the probability distributions (see

figure 1.1 for a one dimensional example). AsM decreases, the approximation

increasingly fails (figure 1.2). The discrepancy between the ideal and actual

density distributions can be modeled as a noise term, so that ρ(x) becomes :

ρ(x) = [M
∑

Ωa∈Ω

p(Ωa) p(x|Ωa)] • n(x) (1.5)

where • is either multiplication or addition, depending on the noise model

being used; and n(x) takes random values, from an appropriate probability

distribution.

1.2 The aims of cluster analysis :

There are two, not mutually exclusive, aims which we may have when

analysing the clustering of data points in a feature space.

Introduction to Cluster Analysis 33

"Infinite" Data Set.

datagen1xE6.dat

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

0.00 50.00 100.00 150.00 200.00 250.00

Figure 1.1: Density distribution of 106 data points.

Finite Data Set.

datagen1xE3.dat

Normalized Frequency x 10-3

Data Value

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

0.00 50.00 100.00 150.00 200.00 250.00

Figure 1.2: Density distribution of 103 data points.

34 Chapter 1

The first is the characterisation of the dataset as a whole. This involves

the extraction of parameters associated with the clusters. How many are

there ? What are their means, variances, etc. ? The determination of paramet-

ric descriptions of lines and, or, curves from clusters in Hough space [Hough,

1962] is an example of this first aim.

The second aim is the classification of individual data points as be-

longing to one of several distinct groups (i.e. approximations to the sub-sets

{ΩA,ΩB, . . .}). This involves placing ‘partitions’, or ‘decision boundaries’, be-

tween each of the clusters. Each of the data points is then assigned a ‘label’,

the value of which depends on which cluster it is deemed to be associated

with. The segmentation of digitised images into regions of similar intensity, or

colour, is an example of this second aim.

The two aims would be combined, for example, in the case of wanting

to use the cluster parameters to characterise, or help identify the underlying

nature of, the regions in a segmented image.

1.3 The problems associated with cluster

analysis :

The first problem linked with cluster analysis is a perceptual one. The

distribution of data points in a two dimensional feature space can be easily

represented as a scatter plot, or a contoured, or colour coded, density plot. The

dataset can thus be readily visualised by a human analyst. In three dimensions

things become a little trickier, but by no means impossible. In four, or more,

dimensions we are left at the mercy of a computer’s (or, more correctly, a

computer program’s) ‘perception’ of the feature space.

Unfortunately, due to the limitations imposed on it by the amount of

memory it possesses, a computer is no better equipped to ‘visualise’ multi–

Introduction to Cluster Analysis 35

dimensional feature spaces than a human is. As was stated above, the most

natural way of visualising a feature space is as an N–dimensional density

plot. However, if, for the sake of argument, each of the measured features

could take any of 256 different values (the number of grey-levels in a typical

digitised image), then, provided you could get away with only using a single

byte to store the density of data points at a given location in the feature space,

the amount of memory required to store various dimensions of feature space

is :

1 dimension ⇒ 256 bytes

2 dimensions ⇒ 64 Kbytes

3 dimensions ⇒ 16 Mbytes

4 dimensions ⇒ 4 Gbytes

If we have access to a high performance workstation, then three dimen-

sions is possible. Otherwise we are limited to two dimensions, or less.

Of course, much of the feature space will be empty, and so the dataset

could be stored as a series of vectors to, non-empty, locations within the fea-

ture space, and the density of data points at that location. In the worst case,

making the same assumptions as above, this will only require M(N +1) bytes

of memory. However, we have now lost the straight forward mapping between

feature space coordinates and computer memory locations. Every time a den-

sity value is required, the list of non-empty locations must be searched through

until the entry for the appropriate location is found. This is not only time con-

suming, but it also destroys any conception of the dataset as a whole. The

dataset becomes a collection of disjoint pieces, and the cluster analysis prob-

lem becomes like an attempt to identify the picture on a jig-saw by looking at

it one piece at a time (in no particular order).

36 Chapter 1

This treatment of the cluster analysis problem as being the analysis of

a set of vectors, rather than as a density distribution (quite often there is not

even the attempt to parcel together vectors which are the same), has, in the

past, led to a lot of very similar solutions. These are reviewed in the next

section. It is the aim of this work to try and break away from this rather

blinkered view and, hopefully, provide a new perspective on the problem.

1.4 Existing techniques :

Most existing cluster analysis techniques fall into two main groups : hi-

erarchical algorithms, and partitioning algorithms [Anderberg, 1973; Murtagh,

1990]. Both approaches require measures for three quantities :

The similarity between two data points (or a data point and a cluster

centre, or even between two cluster centres). This quantity will be positive,

take a maximum value when the two objects are identical, and decrease as the

objects increasingly differ. This could, for example, be based on the Euclidean

distance between the two points in the feature space :

Sψω = S(xψ,xω) =
1

1 + {
∑N
i=1[xi(ψ)− xi(ω)]2}

1

2

(1.6)

The quality of the partitioning (or ‘clustering’) of the data. This quan-

tity will also be positive, it will take a maximum value when the approxima-

tions to the clusters,{Ω
′

A,Ω
′

B, . . .}, are identical to the actual clusters, and it

will decrease as more and more data points are assigned to the wrong cluster

(or the number of Ω
′

a does not match the number of Ωa). This could be the

sum of the squared errors :

Q =
1

1 +
∑

Ω′

a

∑
ω∈Ω′

a

̂(x(ω)−ma)(x(ω)−ma)
(1.7)

where the ma are the mean vectors of the Ω
′

a.

The location of a cluster ‘centre’. This could be either of the averages

Introduction to Cluster Analysis 37

(mean or mode) of the feature vectors within a cluster, or it could be the centre

of the bounding sphere of the cluster.

Actually, S and Q can only meaningfully take relatively high or low

values. That is, we can only say that two points are more, or less, similar than

two other points, and that one arrangement of the partitions is only better, or

worse, than another. We cannot, sensibly, say that two points have a particular

similarity, or that an arrangement of partitions results in a particular quality

of partitioning.

Hierarchical algorithms are based on the idea of calculating the simi-

larity between every possible pair of clusters, and using this information to

decide whether two clusters should be combined, or a single cluster should be

split in two [Anderberg, 1973].

Those which combine clusters are called ‘agglomerative’. They operate

as follows :

1) Assume that all the data points are in clusters of their own.

2) Combine the two clusters which are most similar.

3) Calculate the similarity between the new cluster and each

of the others.

4) If more than the required number of clusters (see §1.5) re-

main, go to (2).

At stage (3) there are four possible methods by which the new similari-

ties may be calculated. The similarity between the new cluster and one of the

others can be :

i) the similarity between their mean vectors.

38 Chapter 1

ii) the minimum of the similarity values Sik and Sjk, where Ω
′

i

and Ω
′

j are the clusters which were combined, and Ω
′

k is any other cluster.

This method produces clusters which are single linkage graphs. That is,

two clusters are linked when the similarity between their two most similar

members (one from each cluster) is greater than the similarity between

their most similar members (within each cluster).

iii) the maximum of Sij and Sjk. This method produces clus-

ters which are complete linkage graphs. That is, two clusters are linked

when the similarity between their two most dissimilar members (one from

each cluster) is greater than the similarity between their most dissimilar

members (within each cluster).

iv) the average of Sij and Sjk. This method produces clusters

which are average linkage graphs. That is, somewhere between single

linkage, and complete linkage.

The use of agglomerative hierarchical clustering algorithms is only prac-

tical for fairly small datasets. Not only because the maximum number of sim-

ilarities to be stored is 1
2
M(M −1), but also the number of iterations required

is M − k (where k is the number of clusters to be found).

The algorithms which split clusters are called ‘divisive’. They work in,

more or less, the opposite way to agglomerative algorithms :

1) Assume that all the data points belong to one big cluster.

2) Take each existing cluster and split it into every possible

pair of sub-clusters. The pair of sub-clusters which are, over all, the

least similar become two new clusters.

Introduction to Cluster Analysis 39

3) Calculate the similarity between each of the new clusters

and each of the existing ones.

4) If less than the required number of clusters exist, go to (2).

The maximum number of similarities which have to be stored is now

only 1
2
k(k−1), and the number of iterations is k−1. However, step (2) will be

so computationally intensive, for any reasonable number of data points, that

divisive hierarchical clustering is rarely used.

Partitioning algorithms also fall into two types : iterative, and non-

iterative.

The architypal iterative algorithm is Forgy’s method [Forgy, 1965]. This

works as follows :

1) Arbitrarily (or using a priori information) define a set of k

cluster centres.

2) Assign each data point to the cluster whose centre it is most

similar to.

3) Recalculate the cluster centres, and calculate the quality of

the clustering.

4) If no data points have changed cluster during this iteration,

stop. Otherwise go to (2).

The termination rule as stated at (4) is not necessarily the best, since,

at some stage, the partitioning may become oscillatory. Termination may also

occur when the quality of the clustering ceases to improve, or a maximum

number of iterations has been reached, or a combination of all three possibili-

ties.

40 Chapter 1

Various refinements to this method have been proposed. For example,

Jancey’s variant [Jancey, 1966; Richards, 1986], in which the new cluster cen-

tres are the reflection of the old ones through the recalculated ones. This will

speed up initial convergence, but could increase the possibility of oscillatory

behaviour later on. Also, there is ISODATA [Ball & Hall, 1965] which is basi-

cally Forgy’s method with the addition of rules for merging clusters which are

very similar, and splitting clusters which are very elongated.

One of the problems with iterative algorithms is that, unless a maximum

number of iterations is set, there is no knowing how long they will take for

a particular dataset. An example of a non-iterative partitioning algorithm is

MacQueen’s k–means [MacQueen, 1967], which operates thus :

1) Take the first k data points as being clusters of one member

each.

2) Assign each of the remaining data points to the cluster

whose centre it is most similar to. Each time a cluster gains a mem-

ber recalculate the position of the cluster centre.

3) Make a final pass through all the data points assigning each

one to the cluster whose centre it is most similar to.

A rather more sophisticated non-iterative partitioning algorithm is the

single pass algorithm [Borden, et al., 1977] :

1) Assign the first data point to cluster number one.

2) If data point i is sufficiently similar to the centre of an

existing cluster, assign it to that cluster. Otherwise, make it the centre

of a new cluster.

Introduction to Cluster Analysis 41

3) Repeat (2) for all the data points.

The results produced by both the MacQueen’s k–means and single pass

algorithms are very dependent on the order in which the data points are pre-

sented. In particular, if the data are derived from, say, an image, then the

first few data points will, usually, be very similar. This would mean that the

MacQueen’s k–means algorithm would produce particularly poor results. The

problem can, of course, be alleviated by randomising the order of the data

points. However, in general, non-iterative algorithms will not produce as good

results as iterative ones, because there is no opportunity for early mistakes to

be corrected.

There is no reason why the algorithms described in this section need

be used in isolation. We could use a hierarchical algorithm, or a non-iterative

partitioning algorithm, to get an estimate of the positions of the cluster centres.

Then use an iterative partitioning algorithm to refine the results.

1.5 The problem with existing techniques :

As was mentioned earlier, all the techniques described above treat the

dataset as just being a collection of vectors. The cluster analysis is achieved

by comparing the individual vectors with each other, or with cluster centres.

This approach to the problem results in any macroscopic view of the data

being lost. In particular, the number of clusters contained in the data, k, does

not (in most cases) come out of the analysis in any particularly natural way.

This is known as the ‘cluster validation’ problem.

The one exception is the single pass algorithm which does provide a

value for k as part of the analysis. But, since it only takes one look at the

data, the rest of the analysis tends to yield poor results. Of course, another

42 Chapter 1

algorithm can be applied to improve the results, once k is known.

Also, a value for k can be obtained, retrospectively, from the hierarchical

algorithms. In the agglomerative case, the clusters would be continued to be

merged until only one cluster remains. At each stage some quantity, like the

quality of clustering, or the mean distance between clusters, is evaluated. The

way that this value varies with the number of clusters is then used to determine

the optimal value for k, and the results from that level of the hierarchy are

then extracted.

However, the most commonly used techniques, the iterative partitioning

algorithms, all require that either a fixed value of k, or, in some cases (e.g.

ISODATA), a modifiable estimate of k, be specified before the analysis begins.

If the cluster analysis is being provided as a computerised aid to a human

analyst, then the value of k may be supplied by a cursory visual inspection

of the data, or by informed guesswork. However, neither of these options is

available if we desire a fully automated system. In this case a considerably

less ad hoc method must be used.

If the range of possible values for k is known, and is not too large,

then the cluster analysis could be performed for all the likely values of k. The

quality of clustering measure could then be used to determine the value of k

which gives the best description of the dataset. Otherwise, some sort of pre-

clustering analysis of the data must be performed. For example, the model

fitting approach used by Zhang & Modestino [1990] prior to employing the

MacQueen’s k–means algorithm.

1.6 A better approach to the problem :

Quite simply, since the clusters are a macroscopic property of the data,

we must try and get away from the microscopic view which is the basis of the

Introduction to Cluster Analysis 43

techniques described previously. We really need to look at the distribution of

data points as a whole.

The ideal way of doing this is to extend the idea of fitting a model to the

density distribution, to cover not only the evaluation of k but also all the other

parameters which are necessary to make an adequate characterisation of the

dataset. This is the basis of the ‘expectation maximisation’ (EM) algorithm

[Hartley, 1958]. Something similar to this was used by Goldberg & Shlien in

1978, but the idea does not seem to have been developed. This may be because

the datasets that they were working with were much smaller than those which

are common today: 64 greylevel, 4 band, LANDSAT Multi-Spectral Scanner

(MSS) data; as opposed to (for example) 256 greylevel, 7 band, LANDSAT

Thematic Mapper (TM) data.

The problems associated with this approach are the same as for any

model fitting, i.e. those of trying to optimise a (potentially) complex cost

function in a many dimensional parameter space. These, basically, involve

trying to find a compromise between speed and the possibility of locating

a sub-optimal solution. It is hard to say, in general, how complex the cost

function will be in this case. The number of parameters, though, will be large:

(N + 1)k, if the clusters are characterised by position and amplitude alone;

3Nk, if widths and rotation angles are included. And, there is the added

complication that k itself is one of the parameters to be determined by the

fitting process.

A much simpler approach is to use the fact that the clusters will always

be associated with local maxima in the density distribution. However, in order

to perform the analysis needed to locate these maxima directly, it is necessary

to construct the entire feature space. As was shown in section 1.3, this is often

not practical. One solution, as used by the Dipix Aries II package [Letts,

44 Chapter 1

1978], is to consider only that part of the feature space which lies within the

bounding box of the clusters, and to sub-sample the resulting sub-space until

the number of data bins is small enough to fit within the available computer

memory. Unfortunately, this method suffers not only from the enforced loss

of detail, but, as will be seen in section 3.3, the location of local maxima in a

feature space of high dimensionality is by no means an easy task (even when

you already have some idea of where they are).

The underlying principle of this algorithm is, however, still sound: clus-

ters of data points will, in general, have their highest density at, or near, their

centres (depending on the definition of ‘centre’). All that is required is a better

approach to the location of these points of locally maximal density.

A question which should, perhaps, always be asked before attempting

to produce an algorithm for solving a problem is ‘How would one go about

doing this, using only pen and paper ?’. With the possible exception of the

hierarchical methods, this question does not appear to be the basis of any of

the existing algorithms. Certainly one cannot picture anyone sitting down and

performing Forgy’s method on the back of an envelope.

How, then, would one go about locating the local maxima using only

pen and paper ? Let us assume the luxury of a data plotting package, in

order to avoid having to consider things at too basic a level. This would allow

us to produce two dimensional plots of the density distribution of the data

points, like those in figures 1.3 to 1.5. These happen to have the density

variation shown by contour lines, but we could just as well work with plots

which show the density by intensity or colour. The actual feature space is

three dimensional, and these plots show all the possible two dimensional views

of it (the data comes from an image of the BBC testcard, after the removal of

lighting effects (see chapter 4)).

Introduction to Cluster Analysis 45

The local maxima in the two dimensional plots are fairly easily located

by eye (taking into account the noise due to inadequate sampling) – there

would appear to be six of them. The three dimensional coordinates of the

cluster centres can then be determined by crossreferencing, as follows :

local maxima at a cluster centre at

(a, b), (b, c), (c, a) ⇒ (a, b, c)

In fact, a cluster centre at (a, b, c) can be inferred from just the local max-

ima at (a, b) and (b, c), but the knowledge that there is a local maximum at

(c, a) provides a sanity check – particularly useful if noise causes the maxima

locations to shift slightly between different views

The cluster centres determined from the data in figures 1.3 to 1.5 are

shown in table 1.1.

Local maxima Cluster
Blue,Green Green,Red Red,Blue centre
152,119 119,113 113,152 152,119,113
130,121 121,133 133,130 130,121,133
110,123 123,150 150,110 110,123,150
108,108 108,170 170,108 108,108,170
136,150 150,98 98,136 136,150,98
90,136 136,154 154,90 90,136,154

Table 1.1: Cluster centre locations inferred from figures 1.3 to 1.5.

The most obvious problem associated with this approach is that of

clusters being superimposed when the feature space is projected down to two

dimensions. Then, the number of maxima located in one, or more, of the

two dimensional views will be less than the number of clusters. This will not

be a problem if the clusters are in exact alignment (see figure 1.6), since the

crossreferencing will still work – it will just mean that several cluster centres

46 Chapter 1

Frequency of Pixels in Blue-Green Plane

100 2000 255

100

200

0

255

Green Intensity

B
lu

e
In

te
ns

it
y

MINIMUM

0

MAXIMUM

3.1e+02

Figure 1.3: Density of data points in BBC testcard image, viewed down the
Red axis.

Introduction to Cluster Analysis 47

Frequency of Pixels in Green-Red Plane

100 2000 255

100

200

0

255

Red Intensity

G
re

en
 I

nt
en

si
ty

MINIMUM

0

MAXIMUM

2.9e+02

Figure 1.4: Density of data points in BBC testcard image, viewed down the
Blue axis.

48 Chapter 1

Frequency of Pixels in Red-Blue Plane

100 2000 255

100

200

0

255

Blue Intensity

R
ed

 I
nt

en
si

ty

MINIMUM

0

MAXIMUM

2.8e+02

Figure 1.5: Density of data points in BBC testcard image, viewed down the
Green axis.

Introduction to Cluster Analysis 49

make use of the same local maximum. If, however, the clusters are just close

together (see figure 1.7) the crossreferencing will fail.

If a particular pair of clusters are close together, with respect to a

particular pair of variables, (x, y), then they will appear superimposed in only

the two dimensional view which has both x and y as coordinates. Now, there

are N(N−1)
2

possible views of the data, of which onlyN−1 would be sufficient for

the calculation of the cluster centre location. So, provided N ≥ 3, losing one of

the views does not mean that the cluster centre location cannot be calculated.

Unfortunately, although the views do contain redundant information, once

we start considering more than one pair of clusters being close together with

respect to more than one pair of variables, the crossreferencing becomes too

complicated to contemplate. What is really needed is for the analysis of the

views to be able to locate the projections of the cluster centres even when the

clusters are superimposed.

Producing a computer algorithm to mimic the human analyst’s location

of local maxima in the two dimensional views would be fairly simple. One

possible approach is to apply a suitable amount of smoothing (to reduce the

noise) and then apply a gradually decreasing threshold. Of the points which

appear above the threshold, those which are not connected to any found with

the previous threshold must be local maxima (see figure 1.8). However, the

complication of trying to deal with superimposed clusters is far from easily

dealt with. The approach to the problem of untangling superimposed clusters,

if not its actual solution, might be made much simpler by only having to work

in one dimension. Certainly, the space that we would be working in would be

much smaller, and simpler. The superpositioning problem would not be made

any worse than it already is, and the crossreferencing stage should only be

marginally more complicated.

50 Chapter 1

A

B

B

C

C

A

Three local maxima found at :

(128,128)

Three local maxima found at :

(128,128)

One local maximum found at :

(128,128)

(128,16)

(128,240)

(16,128)

(240,128)

Inferred cluster centres at :

(128,128,128)

(128,16,128)

(128,240,128)

Figure 1.6: Superimposition of clusters, leading to the multiple use of a local
maximum during crossreferencing.

Introduction to Cluster Analysis 51

A

B

B

C

C

A

Three local maxima found at :

(128,128)

Three local maxima found at :

(128,128)

One local maximum found at :

(128,128)

(112,16)

(144,240)

(16,144)

(240,112)

Infered cluster centres at :

? ? ?

Figure 1.7: Superimposition of clusters, leading to the failure of the crossref-
erencing of the local maxima locations.

52 Chapter 1

Threshold 1

Threshold 2

Threshold 3

Local maximum

Local

Maximum

Local Maximum

Figure 1.8: Local maxima location in a two dimensional feature space, by
gradual thresholding.

Figure 1.9 shows the one dimensional projections of the dataset used for

figures 1.3 to 1.5, and the projected locations of the cluster centres determined

in table 1.1. There is some superpositioning, but it does look as if it should be

possible to use the locations of the peaks, in these sort of plots, as the basis

of a method for locating the cluster centres.

We are now in the position of being able to reformulate the rather vague

question ‘Where are the cluster centres in an N–dimensional feature space ?’

as the more specific questions ‘Where are the (possibly superimposed) peaks

in the N one dimensional projections of the density distribution in an N–

dimensional feature space ?’, and ‘How should the positions of these peaks

be combined, in N–dimensions, in order to give the locations of the cluster

centres ?’.

Introduction to Cluster Analysis 53

Histogram of Red Band

histogram

Frequency x 103

Pixel Intensity-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

0.00 50.00 100.00 150.00 200.00 250.00

Histogram of Green Band

histogram

Frequency x 103

Pixel Intensity

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00 50.00 100.00 150.00 200.00 250.00

Histogram of Blue Band

histogram

Frequency x 103

Pixel Intensity

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

0.00 50.00 100.00 150.00 200.00 250.00

Figure 1.9: One dimensional views of the density distribution of the BBC
testcard dataset.

54 Chapter 1

This structured, or modular, approach to the problem should, hope-

fully, mean that, not only is the problem more easily solved, through being

better defined, but also that, if the solution should fail at all, the reasons for

its failure can be more easily traced, and dealt with. It is this modular ap-

proach, and the algorithms which go to make up the modules, which comprise

the major novel aspect of the work which follows. Chapters two and three deal

with the answering of our two questions. Then chapters four to six look at

the application of this approach to cluster location in the field of image pro-

cessing. Finally, chapters seven and eight compare the approach with some of

those discussed in this chapter, and consider its usefulness and possible future

development.

55

CHAPTER 2
Location of Peaks in One Dimension

The production of one dimensional feature sub-spaces from an N–

dimensional feature space is examined. Then an answer to the question ‘Where

are the peaks in the one dimensional projections ?’ is sought. Existing tech-

niques for locating peaks in one dimension are reviewed, and a new, deconvo-

lution based, technique is introduced. This is shown to work in cases where

previous techniques must fail.

2.1 Reducing the number of dimensions :

The first task, then, is to convert the N–dimensional feature space in

to N one dimensional feature spaces. This is done by ‘projecting’ the data set

onto a set of orthogonal vectors :

ρi(x) =
∫

δ(x− vi · x) ρ(x) dx [1 < i < N] (2.1)

where δ is the Dirac delta function; and the vi are the orthogonal vectors:

vi · vj = 0, i 6= j [i, j = 1, . . . , N]. (2.2)

Unless we wish to rotate the feature space, in order to try and maximise

the separability of the clusters, the vi will be the basis vectors of the N–

dimensional space. This means that the one dimensional feature spaces can,

more simply, be produced by considering separately the components of the

N–dimensional feature vectors, i.e. we can just drop the vector notation from

equation 1.3 :

ρi(x) = [M
∑

Ωa∈Ω

p(Ωa) p(xi|Ωa)] • n(xi) [1 < i < N]. (2.3)

56 Chapter 2

Prior to analysis, the density distributions will usually be converted into

a discrete form (if the data was not discrete in the first place), by ‘binning’

the data according to which of a set of contiguous ranges of values it falls

into. In its simplest form, this will involve shifting and scaling the data to lie

in a suitable range of positive values, and then rounding them to the nearest

integer. This will give a ‘histogram’ of the data set:

hi(nint(x
′

)) = [ρi(x
′

) ∗ Π(x
′

)]× III(x
′

) (2.4)

where x
′

= a(x − b), the shifted and scaled x; nint(x
′

) is the nearest integer

to x
′

; Π(x
′

) is the square pulse function:

Π(x
′

) =

{

1 : |x
′

| ≤ 1

2

0 : |x
′

| > 1

2

(2.5)

and III(x
′

) is the Shah function:

III(x
′

) =
+∞
∑

i=−∞

δ(x
′

− i) (2.6)

2.2 Location of extrema in hi(x) :

Traditionally, one dimensional histograms are analysed by using their

maxima to locate the peaks, and their minima to separate (partition) them

[Sezan, 1990]. Since hi(x) is a discrete function, the most straight forward way

of locating its extrema is to convolve it with the real (as opposed to Fourier)

space filters −1|0|+ 1 and +1| − 2|+ 1 . The first convolution will form the

first derivative of hi(x), h
′

i
(x), and the second will form the second derivative,

h
′′

i
(x). The extremal points of hi(x) are, then, those values of x at which h

′

i
(x)

takes a value of zero. Or, rather, changes sign, because of the discrete nature

of the operations. The sign of h
′′

i
(x) determines whether the extremal point is

a maximum (h
′′

i
(x) < 0), or a minimum (h

′′

i
(x) > 0).

Location of Peaks in One Dimension 57

The main problem with this ‘finite difference’ approach is that the noise

will cause a large number of extremal points to be found which are not extrema

of the ideal density distribution. One way around this is to smooth hi(x) with

a real space filter in order to reduce the effects of the noise. If an additive

Gaussian noise model is assumed, it is best dealt with using a simple mean

filter (e.g. 0.2|0.2|0.2|0.2|0.2) [Bovik, et al., 1983], but other types of noise,

particularly ‘impulsive’ (or ‘salt & pepper’) noise, can require more sophis-

ticated (usually non-linear) techniques [Kundu, et al., 1984; Lee & Kassam,

1985; Lee & Tantaratana, 1990].

Another possibility is to perform the differentiation in Fourier space

[Bracewell, 1978]. This approach uses the fact that (assuming f
′

(x) and f
′′

(x)

are square integrable):

F{f
′

(x)} = 2πiuF (u) (2.7)

where F (u) = F{f(x)}, and F denotes a Fourier transform.

⇒ F{f
′′

(x)} = −4π2u2F (u) (2.8)

The derivatives are then obtained by applying the inverse Fourier transform.

The advantage of this approach is that, in Fourier space, a low-pass

filter can be applied to reduce the effects of the noise. We must be careful,

though, that the filter used does not introduce ‘ringing’ [Gonzalez & Wintz,

1987], as this will cause false peaks to be found. For this reason a Gaussian

filter is the best to use.

A third technique, by which the extremal points may be located, is Had-

don’s multi-resolution approach [Haddon, 1987]. Initially the data is binned

into two ranges of values – min(x) to [max(x)+min(x)]/2, and [max(x)+

min(x)]/2 to max(x) – and the bins classified as being maxima, minima, or

neither. Each ‘parent’ bin is then divided into two ‘child’ bins, and the whole

58 Chapter 2

process is repeated until the data is binned at its full resolution.

We can distinguish real extremal points from those due to noise by look-

ing at how far back in their ‘lineage’ they can be traced as being consistently

classified as a maximum, or a minimum. The extremal points caused by noise

will only be traceable over one or two ‘generations’, whereas the real ones will

be traceable back to a point close to the data’s ‘genesis’.

The main advantage of this technique is that it removes the need for

any filtering.

The result of using the above three techniques on several hi(x) is shown

in figures 2.1 to 2.9. There are nine data sets used for these comparisons. Three

different sets of (roughly) Gaussian peaks, with the positions and widths shown

in table 2.1, and three different levels of noise : low (corresponding to 105 data

points); medium (104 data points); and high (103 data points).

The filter sizes used with the finite difference and Fourier differentiation

algorithms were chosen by finding, for each noise level, the most smoothing

which could be applied that still resulted in all three of the well spaced peaks

being located.

Data Set x̄1 σ1 x̄2 σ2 x̄3 σ3

Well Spaced 32 16 128 12 192 8
Moderately Spaced 96 16 128 12 152 8
Closely Spaced 104 16 128 12 140 8

Table 2.1: Peak positions & widths used for peak location tests.

There are three main problems with the various techniques. Firstly,

with widely spaced peaks, both of the filter based techniques fail to find minima

between the peaks(figures 2.1, 2.4, & 2.7). This is because the gaps between

the peaks are so broad that the first derivative just becomes zero, rather than

Location of Peaks in One Dimension 59

Well Spaced Peaks / Low Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

0.00 50.00 100.00 150.00 200.00 250.00

 = maxima = minima

Algorithm : Finite Difference

Filter used : Five Point Mean
Parameters : None

Well Spaced Peaks / Medium Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

0.00 50.00 100.00 150.00 200.00 250.00

 = maxima = minima

Algorithm : Finite Difference

Filter used : Five Point Mean
Parameters : None

Well Spaced Peaks / High Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

0.00 50.00 100.00 150.00 200.00 250.00

 = maxima = minima

Algorithm : Finite Difference

Filter used : Seven Point Mean
Parameters : None

Figure 2.1: Finite difference analysis, for widely spaced peaks, with varying
degrees of noise.

60 Chapter 2

Moderately Spaced Peaks / Low Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

0.00 50.00 100.00 150.00 200.00 250.00

 = maxima = minima

Algorithm : Finite Difference

Filter used : Five Point Mean
Parameters : None

Moderately Spaced Peaks / Medium Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

0.00 50.00 100.00 150.00 200.00 250.00

 = maxima = minima

Algorithm : Finite Difference

Filter used : Five Point Mean
Parameters : None

Moderately Spaced Peaks / High Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

0.00 50.00 100.00 150.00 200.00 250.00

 = maxima = minima

Algorithm : Finite Difference

Filter used : Seven Point Mean
Parameters : None

Figure 2.2: Finite difference analysis, for moderately spaced peaks, with vary-
ing degrees of noise.

Location of Peaks in One Dimension 61

Closely Spaced Peaks / Low Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

0.00 50.00 100.00 150.00 200.00 250.00

 = maxima = minima

Algorithm : Finite Difference

Filter used : Five Point Mean
Parameters : None

Closely Spaced Peaks / Medium Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

38.00

0.00 50.00 100.00 150.00 200.00 250.00

 = maxima = minima

Algorithm : Finite Difference

Filter used : Five Point Mean
Parameters : None

Closely Spaced Peaks / High Noise

Set 0

Normalized Frequency x 10-3

Data Value-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

38.00

40.00

42.00

0.00 50.00 100.00 150.00 200.00 250.00

 = maxima = minima

Algorithm : Finite Difference

Filter used : Seven Point Mean
Parameters : None

Figure 2.3: Finite difference analysis, for closely spaced peaks, with varying
degrees of noise.

62 Chapter 2

Well Spaced Peaks / Low Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

0.00 50.00 100.00 150.00 200.00 250.00

 = maxima = minima

Algorithm : Fourier Differentiation

Filter used : Gaussn. (FT domain)
Parameters : Gaussn. sigma = 80

Well Spaced Peaks / Medium Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

0.00 50.00 100.00 150.00 200.00 250.00

 = maxima = minima

Algorithm : Fourier Differentiation

Filter used : Gaussn. (FT domain)
Parameters : Gaussn. sigma = 50

Well Spaced Peaks / High Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

0.00 50.00 100.00 150.00 200.00 250.00

 = maxima = minima

Algorithm : Fourier Differentiation

Filter used : Gaussn. (FT domain)
Parameters : Gaussn. sigma = 36

Figure 2.4: Fourier differentiation analysis, for widely spaced peaks, with vary-
ing degrees of noise.

Location of Peaks in One Dimension 63

Moderately Spaced Peaks / Low Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

0.00 50.00 100.00 150.00 200.00 250.00

 = maxima = minima

Algorithm : Fourier Differentiation

Filter used : Gaussn. (FT domain)
Parameters : Gaussn. sigma = 80

Moderately Spaced Peaks / Medium Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

0.00 50.00 100.00 150.00 200.00 250.00

 = maxima = minima

Algorithm : Fourier Differentiation

Filter used : Gaussn. (FT domain)
Parameters : Gaussn. sigma = 50

Moderately Spaced Peaks / High Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

0.00 50.00 100.00 150.00 200.00 250.00

 = maxima = minima

Algorithm : Fourier Differentiation

Filter used : Gaussn. (FT domain)
Parameters : Gaussn. sigma = 36

Figure 2.5: Fourier differentiation analysis, for moderately spaced peaks, with
varying degrees of noise.

64 Chapter 2

Closely Spaced Peaks / Low Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

0.00 50.00 100.00 150.00 200.00 250.00

 = maxima = minima

Algorithm : Fourier Differentiation

Filter used : Gaussn. (FT domain)
Parameters : Gaussn. sigma = 80

Closely Spaced Peaks / Medium Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

38.00

0.00 50.00 100.00 150.00 200.00 250.00

 = maxima = minima

Algorithm : Fourier Differentiation

Filter used : Gaussn. (FT domain)
Parameters : Gaussn. sigma = 50

Closely Spaced Peaks / High Noise

Set 0

Normalized Frequency x 10-3

Data Value-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

38.00

40.00

42.00

0.00 50.00 100.00 150.00 200.00 250.00

 = maxima = minima

Algorithm : Fourier Differentiation

Filter used : Gaussn. (FT domain)
Parameters : Gaussn. sigma = 36

Figure 2.6: Fourier differentiation analysis, for closely spaced peaks, with vary-
ing degrees of noise.

Location of Peaks in One Dimension 65

Well Spaced Peaks / Low Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

0.00 50.00 100.00 150.00 200.00 250.00

Filter used : None

Algorithm : Haddon’s Multi-Resn.

Parameters : Min. generations = 2

 = maxima = minima

Well Spaced Peaks / Medium Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

0.00 50.00 100.00 150.00 200.00 250.00

Filter used : None

Algorithm : Haddon’s Multi-Resn.

Parameters : Min. generations = 2

 = maxima = minima

Well Spaced Peaks / High Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

0.00 50.00 100.00 150.00 200.00 250.00

Filter used : None

Algorithm : Haddon’s Multi-Resn.

Parameters : Min. generations = 2

 = maxima = minima

Figure 2.7: Haddon’s multi-resolution analysis, for widely spaced peaks, with
varying degrees of noise.

66 Chapter 2

Moderately Spaced Peaks / Low Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

0.00 50.00 100.00 150.00 200.00 250.00

Filter used : None

Algorithm : Haddon’s Multi-Resn.

Parameters : Min. generations = 2

 = maxima = minima

Moderately Spaced Peaks / Medium Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

0.00 50.00 100.00 150.00 200.00 250.00

Filter used : None

Algorithm : Haddon’s Multi-Resn.

Parameters : Min. generations = 2

 = maxima = minima

Moderately Spaced Peaks / High Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

0.00 50.00 100.00 150.00 200.00 250.00

Filter used : None

Algorithm : Haddon’s Multi-Resn.

Parameters : Min. generations = 2

 = maxima = minima

Figure 2.8: Haddon’s multi-resolution analysis, for moderately spaced peaks,
with varying degrees of noise.

Location of Peaks in One Dimension 67

Closely Spaced Peaks / Low Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

0.00 50.00 100.00 150.00 200.00 250.00

Filter used : None

Algorithm : Haddon’s Multi-Resn.

Parameters : Min. generations = 2

 = maxima = minima

Closely Spaced Peaks / Medium Noise

Set 0

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

38.00

0.00 50.00 100.00 150.00 200.00 250.00

Filter used : None

Algorithm : Haddon’s Multi-Resn.

Parameters : Min. generations = 2

 = maxima = minima

Closely Spaced Peaks / High Noise

Set 0

Normalized Frequency x 10-3

Data Value-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

38.00

40.00

42.00

0.00 50.00 100.00 150.00 200.00 250.00

Filter used : None

Algorithm : Haddon’s Multi-Resn.

Parameters : Min. generations = 2

 = maxima = minima

Figure 2.9: Haddon’s multi-resolution analysis, for closely spaced peaks, with
varying degrees of noise.

68 Chapter 2

changing sign.

Secondly, both of the filter based techniques find far too many false

extrema at high noise levels (figures 2.1 to 2.9). This indicates that the his-

tograms need to be smoothed even more than they have been, but then we

run the risk of missing some of the real extrema.

Finally, when spurious extrema are discounted, all of the techniques

find too few extrema when the peaks are closely spaced (figures 2.3, 2.6, &

2.9). That is, predictably, a finite difference approach will always fail when

two peaks become so close together that there is no longer a local maximum

associated with each of them.

What we really need is a technique which will give proper estimates

of the peak widths (and other parameters, if necessary), and which, as was

stated in chapter one, can cope when the peaks overlap significantly.

2.3 Adaptive deconvolution of probability distribu-

tion functions :

Let us consider equation 2.3 and examine what it means. The heights

of the peaks in ρi(x) are determined by the values of M p(Ωa), and the shapes

of the peaks by p(x|Ωa). If we can represent the p(x|Ωa) as functions of a set

of parameters (Λ = {λ}), then equation 2.3 can be rewritten as:

ρi(x) =
∑

Ωa∈Ω

PΩa
(ΛΩa

) (2.9)

where PΩa
(ΛΩa

) is the parameterised probability distribution function (PDF)

associated with cluster Ωa, and the noise term (•n(xi)) has been omitted in

order to simplify the subsequent analysis – i.e. it is assumed that we have

the ideal case (adequate sampling statistics). Two of the parameters will be

the amplitude of the peak, λ1(Ωa) ∝ M p(Ωa), and its position, λ2(Ωa)). If

Location of Peaks in One Dimension 69

the PΩa
are redefined so that they are normalised and take their maximum

value at x = 0 (i.e. they are no longer dependent on λ1(Ωa) or λ2(Ωa)), then

equation 2.9 becomes :

ρi(x) =
∑

Ωa∈Ω

PΩa
(ΛΩa

) ∗ [λ1(Ωa)δ(x− λ2(Ωa))]. (2.10)

That is, we can consider ρi(x) to be constructed from a set of delta functions,

located at the positions of the centres of the peaks, and with the same heights

as each of the peaks, each of which is convolved with a function which describes

the shape of that particular peak.

If the parameters of the PDF’s are the same for all the clusters, i.e.

the peaks are all the same shape, then the PΩa
could be deconvolved from the

delta functions by making use of the convolution theorem:

F{ρi} = F{
∑

Ωa

PΩa
(ΛΩa

) ∗ λ1(Ωa)δ(x− λ2(Ωa))}

(2.11)

= F{P ∗
∑

Ωa

λ1(Ωa)δ(x− λ2(Ωa))} (2.12)

= F{P} × F{
∑

Ωa

λ1(Ωa)δ(x− λ2(Ωa))}

(2.13)

⇒
∑

Ωa

λ1(Ωa)δ(x− λ2(Ωa)) = F−1{F{ρi}
1

F{P}
} (2.14)

Actually, equation 2.14 will only be true if ρi is of narrower bandwidth than

P (otherwise division by zero will occur). This will, almost certainly, not be

true, because of the noise term. Therefore, we would have to apply a damping

term at the high spatial frequencies. That is, we would need to use a Wiener

filter [Helstrom, 1967]. With this, equation 2.14 becomes:

∑

Ωa

λ1(Ωa)δ(x− λ2(Ωa)) = F−1{F{ρi}
1

F{P}

|F{P}|2

|F{P}|2 +K
} (2.15)

where K is a constant, the value of which depends on the amount of noise

present. The left hand side of the equation gives us the positions, and heights,

70 Chapter 2

of the peaks, and all of the other parameters are known (since we fixed them

all, in order to be able to do the deconvolution).

In general, however, the parameters will vary with Ωa, and so an adap-

tive (and, therefore, non-linear) approach must be used. The CLEAN algo-

rithm [Högbom, 1974] is just such a technique, much used in radio astronomy.

The operation of the original algorithm is as follows :

let D = Pa ∗ C, where D is the ‘dirty image’, Pa is

the actual point spread function of the imaging system, and C is

the ‘clean image’,

1) find the brightest point in |D|, at xm, if |D(xm)| is less than

some threshold go to (6),

2) fit a copy of Pa to the region of D centred on xm,

3) subtract a fraction of the fitted Pa from D (centred on xm),

4) add a delta function of amplitude αD(xm) to C at xm,

5) repeat from (1),

6) convolve C with an ideal point spread function (Pi).

α is normally around 0.5, and the threshold is normally a few

percent of the intensity of the first brightest point found.

As originally formulated, the only fitting parameter in stage (2) is the

amplitude (λ1(Ωa)). This was because the problem that it was designed to

solve, in radio astronomy, has all the other parameters of Pa fixed. Also, the

original formulation allows for the deconvolution of negative peaks. This, along

with the subtraction of only a fraction of the peak at each iteration, provides a

powerful mechanism for the gradual correction of ‘mistakes’ made early on in

Location of Peaks in One Dimension 71

the process. This does mean, though, that a lot of radio astronomical images

do have small patches where the sky appears to be of negative intensity !

Whilst working on multi-resolution deconvolution of radio astronomical

images [Naylor, 1988] it was realised that any, or all, of the parameters of Pa

could be included in the fitting process, in particular the width, λ3(Ωa). This,

along with the fact that we do not need to produce a ‘clean’ version of h(x),

and the fact that we do not want to have the possibility of negative peaks,

results in the following algorithm for the analysis of the one dimensional feature

sub-spaces :

1) find the highest point in hi(x), at xm, if hi(xm) is less than

some threshold go to (6).

2) fit P (ΛΩa
) to the region of hi(x) around xm,

3) record the values of the parameters (Λ) which give the best

fit,

4) subtract the fitted P (ΛΩa
) from hi(x), centred on xm, setting

any resulting negative values to zero,

5) repeat from (1),

6) finish.

In this new version, the whole of the peak is subtracted in one go,

since, otherwise, it would be difficult, if not impossible, to recombine the Λ

determined for each peak so as to get the ΛΩa
.

The restrictions on this method are as follows. Firstly, all of the

PΩa
(ΛΩa

) must be of the same general form, P (ΛΩa
), (e.g. all Gaussians).

Secondly, since the peaks are being subtracted out in one piece, and

negative peaks are no longer allowed, we have no mechanism for the correction

of early mistakes. In particular, if two peaks are so close together that the

72 Chapter 2

region of overlap forms a peak which is higher than either of the real ones (see

figure 2.10), then this will be found as a peak and deconvolved out first. This

may well result in the distortion of the real peaks in such a manner that either

their properties are not correctly determined, or one of them is not found at

all.

If the two peaks are Gaussians of the same height and width, then

this sort of problem will occur when their separation is less than about 1.25

standard deviations. This limit will vary if the peaks are of different heights

and/or widths, but it is probably safe to state that this approach may suffer

problems when a histogram contains two peaks which are separated by a dis-

tance which is less than 1.25 times the standard deviation of the wider of the

two. Having said that, we will still have found at least one peak which lies

inside the limits of both of the real ones – the peak caused by the overlap. So,

when it comes to the peak linkages stage, which is to follow, we will still get at

least one candidate cluster centre located within each cluster, but it will not,

necessarily, be particularly close to the real cluster centre.

If all of the parameters of P (ΛΩa
) are determined by fitting to hi over a

large enough range of x, then reasonably accurate values will be returned for

them all. However, since the fitting of m parameters involves performing an

optimisation in an m–dimensional space, the fewer parameters which have to

be found the better. To this end, the position, and height, of the highest point

may be used as approximations to λ2(Ωa), and λ1(Ωa). But now, depending

on the severity of the noise around xm, there may be appreciable errors in the

values, unless the histogram has a smoothing filter applied to it prior to the

deconvolution.

The other point that we have to pay attention to is the selection of an

appropriate value for the termination threshold. Taking the data set with

Location of Peaks in One Dimension 73

Two Closely Merged Peaks

combined peaks

peak one

peak two

Y x 10-3

X

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

0.00 50.00 100.00 150.00 200.00 250.00

Figure 2.10: Two merged peaks, showing a false peak between them, due to
overlap.

74 Chapter 2

Termination Low noise Medium noise High noise
threshold case case case

5% 128, 152, 96 129, 152, 93, 127, 152,134, 93,
122,106, 155 106,140,115

6% 128, 152, 96 129, 152, 93, 127, 152,134, 93,
122,106 106,140,115

7% 128, 152, 96 129, 152, 93, 127, 152,134, 93,
122,106 106,140

8% 128, 152, 96 129, 152, 93, 127, 152,134, 93,
122,106 106,140

10% 128, 152, 96 129, 152, 93, 127, 152,134, 93,
122,106 106

12% 128, 152, 96 129, 152, 93, 127, 152,134, 93,
122 106

14% 128, 152, 96 129, 152, 93, 127, 152,134, 93,
122 106

16% 128, 152, 96 129, 152, 93, 127, 152,134, 93
122

18% 128, 152, 96 129, 152, 93 127, 152,134, 93,

20% 128, 152, [96] 129, 152, [96] 127, 152,134, [96]

Table 2.2: Locations of peaks found by deconvolution method, using various
termination thresholds.

the medium separation peaks (see figure 2.2) and applying the deconvolution

analysis with various termination thresholds (expressed as a percentage of

the height of the first peak found) results in the peaks being located at the

positions shown in table 2.2. Peaks which do not correspond to real ones are

listed in italics, and peaks which are missed are listed in brackets. The peaks

are listed in the order in which they were found, i.e. highest first.

Although, from these results, it would appear that a threshold of about

18% of the height of the first peak found would be ideal, this is only because

the data set used does not contain a wide range of peak heights. Since, in this

work, the job of discarding peaks falls on the peak linkage stage (see chapter

3) it was decided that, if anything, the peak location stage should result in too

many peaks being found, rather than risk a real, but small, peak being missed.

Location of Peaks in One Dimension 75

For this reason a termination threshold of 0.5% of the height of the first peak

found has been used throughout this work, except when only one dimensional

data is being analysed, then the threshold is set to 5% – strictly speaking the

technique being outlined in this work should not be used on one dimensional

data sets, but it has been necessary to do this for some of the examples and

comparisons.

The result of using this technique on the same hi(x) as used in §2.1 is

shown in figures 2.11 to 2.13. These results were produced using a Gaussian

model for the PDF, with only the standard deviation (λ3) as a fitting param-

eter. The termination threshold used was 5% of the height of the first peak

found, and the region around xm was defined as xm ± 10. Also, in each case,

hi(x) was smoothed with a five point mean filter, prior to processing, in order

to reduce the effects of noise.

As should be expected, this technique always finds the three peaks,

even when they are quite overlapped. In none of these data sets are the

peaks so close that they give rise to the problems described above. Any extra

peaks that are found are partly the result of noise, and partly the result of

differences between the actual and fitted PDF’s. This is will be largely due

to the smoothing of the histogram causing a flattening of the peaks – so that

they are no longer exactly Gaussian. This problem could be reduced by either

accounting for the flattening in the model used for the PDF; or by using a

mean filter which has weights which are in the form of a Gaussian, rather then

all the same.

When the peaks are close together, the amplitudes, and widths, which

are obtained are not always correct. This is because what overlap is occuring

is causing too much to be subtracted from the first peak found, so that not all

of the second peak remains. This is unavoidable, unless we go back to

76 Chapter 2

Well Spaced Peaks / Low Noise

fitted Gaussians

data

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

0.00 50.00 100.00 150.00 200.00 250.00

Well Spaced Peaks / Medium Noise

fitted Gaussians

data

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

0.00 50.00 100.00 150.00 200.00 250.00

Well Spaced Peaks / High Noise

fitted Gaussians

data

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

0.00 50.00 100.00 150.00 200.00 250.00

Figure 2.11: Deconvolution analysis, for widely spaced peaks, with varying
degrees of noise.

Location of Peaks in One Dimension 77

Moderately Spaced Peaks / Low Noise

fitted Gaussians

data

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

0.00 50.00 100.00 150.00 200.00 250.00

Moderately Spaced Peaks / Medium Noise

fitted Gaussians

data

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

0.00 50.00 100.00 150.00 200.00 250.00

Moderately Spaced Peaks / High Noise

fitted Gaussians

data

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

0.00 50.00 100.00 150.00 200.00 250.00

Figure 2.12: Deconvolution analysis, for moderately spaced peaks, with vary-
ing degrees of noise.

78 Chapter 2

Closely Spaced Peaks / Low Noise

fitted Gaussians

data

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

0.00 50.00 100.00 150.00 200.00 250.00

Closely Spaced Peaks / Medium Noise

fitted Gaussians

data

Normalized Frequency x 10-3

Data Value

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

38.00

0.00 50.00 100.00 150.00 200.00 250.00

Closely Spaced Peaks / High Noise

fitted Gaussians

data

Normalized Frequency x 10-3

Data Value-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

38.00

40.00

42.00

0.00 50.00 100.00 150.00 200.00 250.00

Figure 2.13: Deconvolution analysis, for closely spaced peaks, with varying
degrees of noise.

Location of Peaks in One Dimension 79

subtracting fractions of peaks, and allowing the possibility of negative peaks.

However, we are getting reasonable estimates for the positions of the peaks,

and at least some indication of the widths – the heights are not so important.

The values for the widths, and the heights (if necessary), can always be refined

once we start to look at the data set in the full N–dimensional space.

In all cases the set of real peaks is a subset of the peaks found. This is

vital, since it means that, when it comes to the next stage of the algorithm,

linking the peaks together to form candidate cluster centres in the full N–

dimensional space, we can be quite certain that there will always be at least one

candidate contained in each cluster. None of the existing histogram analysis

techniques, based solely on the location of extremal points, can ever hope to

give us this guarantee.

80 Chapter 2

81

CHAPTER 3

The Linking of Peaks in N–dimensional

Feature Spaces

An answer to the question ‘How should the peaks be combined, in order

to give the locations of the local maxima ?’ is sought. This involves considering

all the possible combinations of peak positions (and a solution to the problem

of dealing with large numbers of combinations is presented). Having discussed

how to eliminate combinations which are not even located within clusters, the

problem of determining which of the remainder are local maxima is considered.

Having found all of the peaks (i.e. the projections of the clusters) in

each of the one dimensional sub-spaces we need to find out which of the peaks

are associated with each of the clusters in the full N–dimensional feature

space. This will then enable us to obtain the set of N–dimensional vectors

which describe the positions of the cluster centres.

Working with pen and paper this would be done by extended the loca-

tions of the peaks across the two dimensional density plots and seeing which

of the intersections between them occur near local maxima. See figures 3.1 to

3.3. From these figures it can be seen that there are, in general, three types

of intersection : those which occur at, or near, local maxima/cluster centres

(marked A); those which occur within clusters, but not near local maxima

(marked B); and those which do not occur within clusters (marked C). We

need an algorithm which will either select the A type, or reject the B and C

types.

82 Chapter 3

Frequency of Pixels in Blue-Green Plane

90 100 110 120 130 140 150 160 170

100

66

176

Green Intensity

B
lu

e
In

te
n

si
ty

MINIMUM

0

MAXIMUM

2.8e+02

A

A

A

A

A

A

B

B B

B B B

B B

B B B

B B B

C C C

CC

C C

C C

CC

C C C C C

Figure 3.1: Cluster centre candidates in BBC testcard dataset, viewed down
the Red axis.

Linking Peaks 83

Frequency of Pixels in Green-Red Plane

10079 194
90

100

110

120

130

140

150

160

170

Red Intensity

G
re

en
 I

n
te

n
si

ty

MINIMUM

0

MAXIMUM

3.3e+02

A

A

A

A

A

A
B
B

B

B
B
B

B
B
B

C

C C C C C

CCCCC

C
C
C

C
C
C

CCCCC

Figure 3.2: Cluster centre candidates in BBC testcard dataset, viewed down
the Blue axis.

84 Chapter 3

Frequency of Pixels in Red-Blue Plane

10066 176

100

79

194

Blue Intensity

R
ed

 I
n

te
n

si
ty

MINIMUM

0

MAXIMUM

2.8e+02

A

A

A

A

A

A

B

B B

B

B

C C C C

CCC

C C C C

CCCC

C C C C C

CCCCC

Figure 3.3: Cluster centre candidates in BBC testcard dataset, viewed down
the Green axis.

Linking Peaks 85

However, before we can consider what form this algorithm might take,

we need to overcome a problem. Originally we had bN possible cluster locations

(where b is the number of data bins in each dimension), i.e. any of the cluster

centres could be anywhere in the feature space. Even for a three dimensional

feature space, with 256 bins per dimension, this would come to 224 possible

locations, for a seven dimensional space, with the same number of bins per

dimension, this increases to 256 possible locations. Now we have reduced the

possible locations to the number of intersections between the extensions of

the peak locations into the N–dimensional feature space (or, more simply,

the number of possible combinations of peak location). That is
N∏

s=1

ns (where

ns is the number of peaks found in the one dimensional sub-space s, ns≤b,

always, and ns << b, usually). Now, two, or more, clusters may give rise to

a single peak, due to superpositioning, but a single cluster should never give

rise to multiple peaks (assuming that the noise level is not too high), so ns

should always be less than, or equal to, k. Therefore, the upper limit on the

number of combinations will be kN . Unfortunately, this may still be a large

number. For, whilst with eight clusters in a three dimensional space we only

need to consider upto 29 combinations of peak locations, in seven dimensions

the figure would rise to 221 combinations (for the same number of clusters).

Therefore, with more clusters, or higher numbers of dimensions, it is quite

possible that we could exceed the computer’s memory limits when it actually

comes to implementing an analysis of the combinations.

There is also a problem in that the usual way of going through a set of

combinations in a computer program would be to have a set of nested loops,

one loop per set of objects which we can choose from. In our case, we need

loops nested to a depth N , with the loop at level s stepping from 1 to ns. This

would be fine if N was fixed for all applications, or the program was being

86 Chapter 3

written in a language which allows recursion. But, in trying to write as general

a program as possible, in FORTRAN 77, neither of these avenues is open to us,

and we are faced with an, apparently, impossible programming task.

3.1 Labeling of combinations :

Fortunately, both of these problems can be overcome by assigning a

unique label to each of the possible combinations of peaks. Thus, only a single

loop is required (stepping through the labels), and the combinations can be

considered a few at a time (where ‘a few’ may be anything up to a million, say,

depending on the available computer memory), with only those combinations

which are of interest being recorded for later use.

A simple method of labeling the combinations of peaks is to use the

equation :

L = l1 +
N−1∑

s=1

(
s∏

p=1

ns)(ls+1 − 1) (3.1)

where ls is the number labeling a peak within sub-space s (1 ≤ ls ≤ ns).

Each possible combination of peaks is then labeled with a number in the

range 1 to
N∏

s=1

ns. This is an extension, into an arbitrary number of dimensions,

of the standard programming technique for mapping between the indices of a

two dimensional array and a one dimensional one (n=x+((y-1)*xsize)). In

this, two dimensional, case we can think of the rows of the array being placed

end to end. The y index (in the two dimensional space) then gives the number

of complete row sections which we must move through the one dimensional

array, and the x index gives the offset within the next row section (see figure

3.4). Table 3.1 gives an example of the application of the labeling procedure

in three dimensions.

Although this equation is not analytically invertible it is computation-

Linking Peaks 87

etc.

1 2 3 4 5 6 7 8 9 10 11 12

1,1 2,1 3,1 4,1

1,2 2,2 3,2 4,2

1,3 2,3 3,3 4,3

1,4 2,4 3,4 4,4

1,1 2,1 3,1 4,1 1,2 2,2 3,2 4,2 1,3 2,3 3,3 4,3

Figure 3.4: Mapping between two dimensional and one dimensional array
element numbers.

Peak Label Peak Label Peak Label
Numbers Numbers Numbers
(1,1,1) 1 (1,1,2) 7 (1,1,3) 13
(2,1,1) 2 (2,1,2) 8 (2,1,3) 14
(3,1,1) 3 (3,1,2) 9 (3,1,3) 15
(1,2,1) 4 (1,2,2) 10 (1,2,3) 16
(2,2,1) 5 (2,2,2) 11 (2,2,3) 17
(3,2,1) 6 (3,2,2) 12 (3,2,3) 18

Table 3.1: Example of peak numbers and combination labels (n1 = 3, n2 = 2,
n3 = 3).

ally invertible. However, to make things easier we need to label the peaks

from 0 to ns − 1 (rather than 1 to ns) and use combination labels from 0 to

(
N∏

s=1

ns)− 1 (rather than 1 to
N∏

s=1

ns). Then equation 3.1 becomes :

L
′

= l
′

1 +
N−1∑

s=1

(
s∏

p=1

np)l
′

s+1 (3.2)

where L
′

= L − 1 and l
′

s = ls − 1, but np is still the number of peaks in

sub-space p not the maximum peak label number (which is now np − 1).

Now, the component of the combination label which deals with the first

N − 1 dimensions must be smaller than the possible number of combinations

in those dimensions, so :

l
′

1 +
N−2∑

s=1

(
s∏

p=1

np)l
′

s+1 < (
N−1∏

p=1

np) (3.3)

88 Chapter 3

Also :

L
′

= l
′

1 +
N−2∑

s=1

(
s∏

p=1

np)l
′

s+1 + (
N−1∏

p=1

np)l
′

N (3.4)

(expressing the last step of the summation in equation 3.2 explicitly). This

means that the following equation will hold true for integer division :

l
′

N =
L

′

(
∏N−1

p=1 np)
(3.5)

The remainder from this division will contain just the contributions to

the combination label from the first N − 1 dimensions, and so, since equation

3.3 still holds for N←(N − 1), the whole inversion process can be described

by :

l
′

s =
L

′

s

(
∏s−1

p=1 np)
(s = N,N − 1, . . . , 2, 1) (3.6)

where L
′

s is the partially inverted combination label :

L
′

s =

{
L

′

(s = N)
L

′

s+1 − (
∏s

p+1 np)l
′

s+1 (s = N − 1, N − 2, . . . , 2, 1)
(3.7)

Thus, given a combination label, L, we can always determine which set

of peaks is associated with it. There will still be a limit to how many combi-

nations can be considered, however, since the maximum value of L is limited

by the largest number that can be stored as an integer by the programming

language being used. This may present a problem for very high dimensional

feature spaces containing large number of clusters.

3.2 Discarding voids :

Having labeled all of the possible combinations of peak locations, we

can now consider them to be a list of candidate cluster centres. We now need

to go through this list and apply a set of rules to determine which of the

candidates are of type A, i.e. actual cluster centres.

The most obvious rule, and the easiest to implement, is that the can-

didate vector must lie within a cluster, i.e. it should not be of type C. The

Linking Peaks 89

simplest way to employ this rule is to see whether or not the density of data

points in the vicinity of the candidate is greater than some, small, threshold. If

it is not, then the candidate lies in the void between the clusters, and cannot,

therefore, be a cluster centre.

There are several possible definitions of ‘in the vicinity’ which we might

use. Figure 3.5 shows, in two dimensions, the possibilities : hyper-cuboids, or

hyper-ellipsoids; of either fixed size, or of a size determined by the proximity

of neighbouring candidates. Of these, using fixed sized hyper-cuboids is the

least computationally intensive. But the division of the feature space into

hyper-cuboids of variable size (in such a way that the whole feature space is

covered, with no overlap) is used in the program, since this removes the need

to determine how large a fixed size hyper-cuboid should be used for the best

results. Also, this is the only approach which ensures that every data point is

assigned to exactly one candidate.

Fixed size hyper-cuboids. Variable size hyper-cuboids.

Fixed size hyper-ellipsoids. Variable size hyper-ellipsoids.

Figure 3.5: Possible definitions for the ‘neighbourhood’ of a candidate vector.

90 Chapter 3

Ideally the threshold should be set to zero, so that only those candi-

dates which lie in totally unpopulated parts of the feature space are discarded.

However, in practice, a small, but non-zero, threshold will be used. This has

the advantage that some of the type B candidates which are in the extremities

of clusters will be discarded, as well as all the type C ones, and it enables us

to set a limit on the smallest size of cluster which we are interested in detect-

ing. For the purposes of the program used in this work the threshold is set to

0.025% of the total number of data points, or 200 data points, whichever is

the larger.

3.3 Determination of local maximality :

The application of our first rule should have considerably reduced the

number of candidate cluster centres. In the ideal case (compact, well separated,

clusters) the remaining candidates would actually be the cluster centres, i.e.

there would be just k of them. However, it is likely that one or two candi-

dates, to either side of each of the cluster centres in each dimension, will have

survived. If we say that in a bad, but not necessarily the worst, case we still

retain all of the candidates which are neighbours of each of the actual cluster

centres, then we will have 3Nk candidates remaining. For our eight cluster

example this would mean roughly 27.8 candidates remaining (down from 29)

in the three dimensional case, and roughly 214.1 (down from 221) in the seven

dimensional one. The worst case would, of course, be to still have all the

candidates that we started with.

Now we need a second rule to distinguish between the type A candidates

and the type B ones. This is provided by their definitions – type A candidates

are at, or near, local maxima in the density distribution, and type B candidates

are not. The same rule could, of course, be used to distinguish between type A

Linking Peaks 91

candidates and type B & C candidates directly, without the need for our first

rule. But, the second rule will be far more computationally time consuming

than the first, so it is best to try and minimise the number of candidates to

which it will be applied.

One possible method for determining whether or not a candidate vector

satisfies the second rule is to use it as the starting point for a steepest ascent

algorithm [Polak, 1971]. At each step we can picture a ‘climber’ considering

all of the points adjacent to that on which it currently ‘stands’, it then moves

to the highest, in the hope that this will eventually lead it to a maximum. In

our case, if the climber manages to get too far away from the starting point

before reaching a ‘summit’, then the starting point is not at, or even near, a

local maximum. This has the nice advantage that it automatically gives us a

refinement of the estimates of the cluster locations.

However, there are several problems with this technique. The first

is that, at each step of the steepest ascent, 3N − 1 comparisons have to be

made. This makes the algorithm increasingly unsuitable as N gets larger.

The problem can be alleviated, somewhat, by only allowing the climber to

move parallel to the axes of the feature space (i.e. no diagonal moves). This

reduces the number of comparisons to 2N , which is rather more manageable.

See figure 3.6.

The second problem is that, for N greater than two, or possibly three,

the feature space cannot be stored in the computer’s memory in its entirety

(as was discussed in §1.3). For slightly larger N we could get away with only

constructing the region of the feature space about which the climber is to

be allowed to ‘roam’. But this would have to be done separately for each

candidate cluster centre, and it is still not suitable for arbitrarily large N .

One way around this storage problem would be to run the steepest

92 Chapter 3

Three dimensions :Two dimensions :

All moves allowed :

Diagonal moves disallowed :

(2N comparisons)

N
(3 -1 comparisons)

Figure 3.6: The number of locations a ‘climber’ has to look at in the steepest
ascent algorithm.

ascent algorithm in each of the possible two-dimensional sub-spaces of the

feature space. Provided that the number of data bins is not too large, each of

these sub-spaces can reside in the computer’s memory (one at a time). Once

the local maximum has been reached in one of the sub-spaces the climber will

set off again from the projection of its current position into the next sub-space.

See figure 3.7.

Unfortunately, the number of possible two-dimensional sub-spaces is

N(N−1)
2

, and, for large N , this number will become prohibitively large. A solu-

tion to this would be to use only theN sub-spaces s = {1, 2}, {2, 3}, . . . , {N, 1}.

However, once we start considering the sub-spaces individually, there will be

instances when the climber gets ‘side-tracked’ in one of the sub-spaces, and

there is no ascending path in any of the remaining sub-spaces which will allow

the error to be corrected. In the example shown in figure 3.8, when we come to

consider the sub-space BC all the candidates will be drawn towards the centre

Linking Peaks 93

A

B

B

 C

C

 A

Stage One Stage Two

Stage Three

Final position.

previous stages.
Projected movement in

Movement in the current stage.

Starting position.

Figure 3.7: The movement of the ‘climber’ in the modified steepest ascent
algorithm.

of the merged clusters. This has no effect on case a, but case b shows how a

candidate could be erroneously discarded for having travelled too far from its

start point, and case c shows how a candidate can still survive despite having

migrated from one cluster to another – thus duplicating a cluster centre that

has already been found, whilst leaving the original cluster undetected.

Finally, any optimisation type approach will suffer from the problem

that the peaks which the climber is expected to ascend are not going to be

very smooth (only a very large dataset would have sufficiently good statis-

tics for this to be so). This will result in the climber getting stuck on local

sub-maxima, and, hence, providing a false positive result for the test of local

maximality. This could be overcome by either smoothing the data, or modify-

94 Chapter 3

A

B

B

 C

C

 A

Stage One Stage Two

Stage Three

Final position.

previous stages.
Projected movement in

Movement in the current stage.

Starting position.

a a

a

 b

b

 b

 c

c

c

Figure 3.8: Examples of the ‘climber’ getting sidetracked in the modified steep-
est ascent algorithm.

ing an optimisation algorithm which is very good at finding global maxima so

that it finds local maxima, but does not stop at the sub-maxima. For example,

we could probably produce a scheme for controlling the ‘temperature’ of the

‘simulated annealing’ algorithm [Kirkpatrick, et al., 1983] that would do this.

Although each of these possible approaches has only been presented here

in a theoretical way, all of them, with the execption of simulated annealing,

were attempted in practice, and the problems described were all encountered

when working with real data. Also, so far, we have ignored the situation,

described in chapter 2, where very closely spaced peaks, in the one dimensional

analysis, could result in a single off-centre candidate being found for a cluster.

The whole premise of using an optimisation approach was that the candidates

Linking Peaks 95

which we want to preserve would always be near the local maximum, but we

have already seen that this may not necessarily be the case. For these reasons

it was decided to try looking in a completely different direction for a way of

implementing the test of local maximality.

3.4 The ‘IKOC’ algorithm :

The implementation of the second rule which has been devised for this

work could be referred to as the ‘I’m the King of the Castle’ (IKOC) approach.

Quite simply, we take the candidate vector which most nearly coincides with

the global maximum in the density distribution and compare the density of

data points at this position in the feature space with that at the positions of

the neighbouring candidates. Any neighbouring candidate which has a lower

density of data points associated with it is replaced by the central candidate

(at this, first, stage this will be all of them). We then take the candidate

vector which has the next highest density of data points associated with it

(ignoring those candidates which have been replaced) and repeat the process

(with replacement candidates used instead of the neighbours, if they exist).

This is repeated for all of the remaining (non-replaced) candidates.

We, of course, need to define the set of neighbouring candidates. These

may be just those which are more similar to the one under consideration than

any other. Or, better still, they could be those which lie within a certain range

of similarity about the candidate.

The important thing is that the neighbourhood is not too large, oth-

erwise the centres of small clusters will be discarded if they are too close to

larger ones, or too small, otherwise not all of the type B candidates will be

discarded. An example of the IKOC process, using idealised neighbourhoods,

is shown in figure 3.9. Candidate 7 would be discarded as a result of the first

96 Chapter 3

 4

 1 2 3

 5 6

 7
8 9

10

Figure 3.9: Idealised example of the operation of the IKOC algorithm.

rule, candidate 1 will be discarded as being sub-maximal in the neighbourhood

of candidate 4, then candidate 9 will be discarded as being sub-maximal in

the neighbourhood of candidate 8, and, finally, candidates 2, 5 & 6 will be

discarded as being sub-maximal in the neighbourhood of candidate 3. This

leaves candidates 3, 4, 8 & 10 as the actual cluster centres. Although some

sort of refinement of the locations will need to be performed before candidate

10 actually coincides with its corresponding cluster centre.

In the program, the data are assigned to the nearest candidate vector,

and the ‘transformed divergence’ [Swain & Davis, 1978] between each pair of

vectors is calculated :

dTIJ = 2(1− e−dIJ/8) (3.8)

where dIJ is the divergence between the sets of data points I and J :

dIJ =
1

2
Tr{(ΣI − ΣJ)(Σ

−1
J − Σ−1

I)}

+
1

2
Tr{(Σ

−1
I + Σ−1

J)(mI −mJ)
̂(mI −mJ) (3.9)

Linking Peaks 97

where ΣI and mI are the covariance matrix and mean vector of I, respectively,

and Tr{} is the matrix operation ‘trace’, i.e. the sum of the terms on the

leading diagonal.

The neighbours of a candidate are then those for which the transformed

divergence is less than some threshold. Now, since the value of dTIJ saturates

at 2.0 near the edge of a cluster, and, since we only want to include in a

neighbourhood those candidates which lie within the same cluster, ideally

the threshold value should be just less than 2.0. However, in the program

which implements this work, approximations are used in the calculation of

the covariance matrices, such that a value of, say, 1.95 will often result in

candidates being falsely discarded, so the threshold of 1.7 was used for all the

results presented in this work.

This approach has not proved to be ideal (see chapter 7), but it is faster,

and more reliable, than any of the optimisation based techniques. Also, if there

is only one candidate present in a cluster, the IKOC algorithm will not discard

it, no matter how far it is from the real centre.

After the second rule has been applied to all of the candidate vectors,

the few which remain are considered to coincide with the centres of the clus-

ters of data points in the feature space. Some adjustment may be necessary

depending on the desired definition of ‘centre’ – in the program the data points

are each assigned to the nearest remaining candidate and the mean positions

of the data points in each cluster determined. The number of surviving can-

didates should be equal to the number of clusters (k), removing any need for

iteration or backtracking, as required by the existing cluster analysis tech-

niques.

These vectors may then be used for partitioning, or otherwise charac-

terising, the data.

98 Chapter 3

99

CHAPTER 4

Multi-spectral Image Segmentation

An introduction is made to multi-spectral imagery, and the purposes

of image segmentation. The problems caused by shading in images is dis-

cussed, and a generalised method for its removal, from multi-spectral images,

is presented. The use of cooccurrence matrices in image segmentation, and

edge detection, is reviewed. Finally, the new algorithm is used as part of an

image segmentation technique based on the location of clusters in a multi-

dimensional cooccurrence space, and some results are presented.

4.1 Multi-spectral images :

A multi-spectral image is one which is quantised not only in its spatial

coverage (‘pixels’) but also in its spectral coverage (‘bands’). Whilst it is

possible to have a two band multi-spectral image, the simplest one is usually

taken to be composed of three bands, an example of such a three band image is

that produced by a video camera. The three bands correspond roughly to the

three regions of the visible spectrum to which the three colour receptors of the

human eye are sensitive (blue: 0.40–0.50 µm; green: 0.50–0.60 µm; red: 0.52–

0.65 µm). However, for technical reasons, a video camera does not actually

record using the red/green/blue (RGB) system, but a luminance value and

two chrominance values which are linear combinations of R, G, & B [Wright,

1969].

Other imaging systems utilise more (sometimes many more) than three

bands, covering not only the visible region of the spectrum but also going

100 Chapter 4

into the infra-red and, more rarely, the ultra-violet. For example, the multi-

spectral scanner (MSS) on the LANDSAT 1, 2, & 3 Earth observation satellites

(see table 4.1), and the thematic mapper (TM) on LANDSAT 4 & 5 (see table

4.2). At the more extreme end there are the, so called, ‘imaging spectrometers’

which operate with up to around 256 spectral bands. To date their use has

been limited to airborne observations, but it is only a matter of time before

one is included as part of a spaceborne system.

Band Wavelength (µm) Resolution (m)
4 0.50–0.60 80
5 0.60–0.70 80
6 0.70–0.80 80
7 0.80–1.10 80
8† 10.40–12.50 120

Table 4.1: LANDSAT 1, 2, & 3 MSS characteristics (†- LANDSAT 3 only).

Band Wavelength (µm) Resolution (m)
1 0.45–0.52 30
2 0.52–0.60 30
3 0.63–0.69 30
4 0.76–0.90 30
5 1.55–1.75 30
6 10.40–12.50 120
7 2.08–2.35 30

Table 4.2: LANDSAT 4, & 5 TM characteristics.

Synthetic aperture radar (SAR) systems extend the spectral coverage

into the microwave region (∼ 3 cm), and, with the launch of the ERS-1 satel-

lite, the routine availability of SAR images should see their increasing use for

remote sensing [NRSC pamphlet G 06]. However, by default, SAR systems pro-

duce images whose coordinates are azimuth and ‘slant-range’ (distance from

the SAR system along the line of sight), rather than the usual azimuth and

Image Segmentation 101

projected ‘ground-range’ (distance from the SAR system along a terrainless

ground plane, or geoid). This means that a SAR image has to be converted

to azimuth/projected ground-range (geocoded) before it can be sensibly com-

bined with images from the more common sensors.

This process of co-referencing data from different sensors can, in fact,

be applied to data obtained by non-imaging processes, thus allowing their

inclusion as ‘non-spectral’ bands in a multi-band image. For example, data

obtained from laser range-finding or magnetic field measurements, or even

from actual ‘in the field’ examination of parts of a scene being imaged. The

multi-band image thus becomes part of a data fusion process.

4.2 The information contained in multi-spectral im-

ages :

As will be discussed in more detail in §4.4, one can make the (slightly

simplistic) generalisation that the intensity component of a multi-spectral im-

age of a ‘natural’ scene contains information about the shape of the objects in

the scene, and that the colour component contains information about the iden-

tity of the objects. For example: grass is green; the sky is blue; and oil bearing

shales are dark in the visible part of the spectrum, and slightly brighter in the

near infra-red. This generalisation breaks down most when man-made objects

are introduced into the scene. Such objects are rarely characterised by their

colour (not all biscuits are yellow, and not all large red objects are London

Transport omnibuses).

Chapter 5 contains a fuller description of the information to be gleaned

from multi-spectral images of ‘natural’ scenes in the field of remote sensing.

102 Chapter 4

4.3 The purpose of segmenting multi-spectral im-

ages :

The segmentation (or classification) of an image involves dividing it up

into ‘regions’ containing pixels which all exhibit the same characteristics. The

regions are then labelled in such a way that regions whose pixels share the

same characteristics have the same label (they are in the same ‘class’).

This process can be seen as either one of data reduction (see chapter

6), or feature extraction (see chapter 5). Data reduction is an end in itself,

but feature extraction is an important first stage in the quest to ‘understand’

a scene.

If the attempt to understand the contents of an image is being made

by a computer program, then the feature extraction converts the image data

into a form which the program can more easily ‘comprehend’. That is, one

is transforming from a set of features which is based purely on pixel values

to one which is based on such things as: the colour of a region; a parametric

representation of the shape of a region; and details of one region’s relationship

to those around it (e.g. does it surround, or is it surrounded by, another

region ?).

The idea of easing comprehension is also important in the case where

the image is to be analysed by a human being. Because of the limitations of

the human eye, there is no way of making a combined presentation of more

than three spectral bands to a human analyst at any one time. The usual ways

of getting around this problem are to either make a false colour composite of

the three spectral bands which are most relevant to the problem in hand, or

to perform a ‘principal components’ transformation on the data [Gonzalez &

Wintz, 1987]. The transformed data is such that most of the variation in the

Image Segmentation 103

data is contained within the first few transformed bands. The first three of

these are then false colour composited for analysis.

A segmented image, however, contains information from all the spectral

bands in, what is effectively, a single band image (the class labels). This

can be pseudo-coloured to help distinguish between regions, and the spectral

characteristics of the various classes can be provided in tabular form.

The importance of performing feature extraction prior to attempting

to interpret the data cannot be over estimated. It is not merely a question of

making the interpretation easier, particularly where computer interpretation

is involved, it is a question of making it possible at all. For the interpretation

process to work properly there must be both a ‘low level’ feature extraction

stage, and a ‘high level’ analysis of the relationships between the features

resulting in the recognition of complex objects. Whilst it is still possible to

make, limited, sense of the data if the second stage is either missing or of

limited functionality, if there are problems with the first stage then, at best,

we will have an erroneous interpretation of the data, or, at worst, no concept of

the data at all. The title essay in “The Man Who Mistook his Wife for a Hat”

[Sacks, 1986] gives an example of a man who is only able to do visual feature

extraction. He is still capable of carrying on a fairly normal life, however, even

though, for example, he might see something as a ‘convoluted red object with

a linear green attachment’ without recognising it as a rose.

4.4 Processing of multi-spectral images prior to seg-

mentation :

As was stated in §4.2, one can consider the intensity component (the

sum of the spectral bands) of a multi-spectral image to be due to the shape

of the objects in a scene. Indeed, this is the basis of the so-called ‘shape

104 Chapter 4

from shading’ techniques which aim to get three-dimensional information from

non-stereo two-dimensional images [Horn, 1986]. Not only does the intensity

depend on the (gross) shape of the objects, but it also depends on the texture

of their surfaces. Rough surfaces will show a much wider local variation in

intensity than smooth ones.

Both of these effects are something of a nuisance when attempting to

segment a multi-spectral image. One does not want the parts of an object

facing away from the light source to be put in a different class to those which

face towards the light. And, one does not want a rough surface to be broken

up into a collection of small regions spread over several classes. Therefore, it

would be advantageous to be able to remove these ‘lighting effects’ prior to

starting the segmentation. Of course nothing can be done about regions of

the image which are in complete shadow (i.e. the value of all of the spectral

bands is at, or near, zero), there is just no information available on which to

base any corrective measures.

If one knows the shape of all the objects in a scene, and the positions

and characteristics of all the sources of illumination, then one can, in the-

ory, determine what the lighting effects are for an image, using the reverse

of the shape from shading techniques. However, in practice, the necessary

calculations are prohibitively complex. If simplifying assumptions are made

(e.g. single scatter, Lambertian scattering), the results are of limited use (see

Forsyth & Zisserman [1989] for a discussion of the effects of multiple scattering

on shape from shading results).

In most cases, though, only the image data itself will be available. This

does not mean that the lighting effects cannot be dealt with, but it does mean

that simplifying assumptions have to be made if any progress is to be made.

Image Segmentation 105

In his ‘retinex’ theory Land [1977] makes the assumption that smooth

variations in the intensity of an image are due to lighting effects, and that rapid

variations are due to changes in the objects themselves (i.e. the reflectivity

of the scene). This approach allows lighting effects to be removed from even

mono-spectral images. Put as simply as possible, one follows a track across the

image ignoring any change in intensity (from one pixel to the next) which is less

then some threshold. If there is a change which is greater than the threshold,

then all the pixels between this abrupt change and the last one (or the start of

the track, if this is the first abrupt change) are set to their mean value. Once

the end of the track is reached all the pixel values are renormalised so that

the largest intensity encountered along the track is scaled to some predefined

value – this is because we cannot assume any of the pixels to be unshaded.

Figure 4.1 shows the result of applying the retinex algorithm in an idealised

case, similar to the intensity variation across the middle of the synthetic image

in figure 4.2.

This aproach has three important shortcomings. Firstly, it is not obvi-

ous how to arrange the track (or tracks) so as to remove the lighting effects

from the whole of a two dimensional image (Land was only interested in how

the eye determined the ‘true’ colour of individual points in an image). Sec-

ondly, it assumes that the surfaces of the objects, in a scene, are fairly smoothly

varying. It would, for example, assume that the change in intensity between

two faces of a cube, lit from one side, is due to a change in the reflectivity of

the surface of the object, not due to lighting effects. Finally, the renormalisa-

tion process is thrown into disarray if a light source is included in the image

[Horn, 1986]. This may occur through the direct imaging of the source, indi-

rect imaging of the source via specular reflection, or (as in the case of thermal

infra-red images) the objects in the scene may be self-illuminating.

106 Chapter 4

Figure 4.1: Idealised application of the retinex algorithm to the removal of
lighting effects.

Image Segmentation 107

An alternative assumption which can be made is that the intensity

variations are entirely due to lighting effects. One then only needs to convert

the image to one which has uniform intensity, to remove all the lighting effects.

The simplest way of doing this is to divide each spectral band by the

sum of all the spectral bands (the intensity), this results in an image with a

uniform intensity of unity (each band may then be multiplied by a constant

scaling factor, if necessary). Where all the spectral bands take a value of zero

their new values should all be set to the inverse of the number of spectral bands,

for consistency. Although quick, and simple to implement, this technique will

break down in regions of the image which are almost, but not quite, completely

black. If all but one of the spectral bands take a value of zero the processed

image will have that spectral band set to the highest possible value, and all

the rest to zero. This means that any noise in, what should be, a completely

black region, will result in the processed image containing a random mixture

of pure ‘colours’ (spectral responses), as in figure 4.2.

A better way to produce an image of uniform intensity is to transform

the data from the set of spectral bands to a set of bands wherein one band

contains only the intensity information, and the other bands contain only the

colour information, shared between them. The intensity band is then set to a

constant value, and the inverse transform applied. See figure 4.3.

With three band (RGB) images the transformation normally used to

get all the intensity information into one band is the RGB↔HIS transform. A

possible set of expressions for this are :

H = tan−1[

1√
6
R− 2√

6
G

− 1√
6
R− 1√

6
G+ 2√

6
B
]

I =
1

3
[R +G+B]

S = [(− 1√
6
R − 1√

6
G+

2√
6
B)2

108 Chapter 4

+(
1√
6
R− 2√

6
G)2]

1

2 (4.1)

where H is related to the physical quantity ‘hue’ (a measure of the spectral

position of the colour), I is the mean intensity, and S is the ‘saturation’ (a

measure of the purity of the colour). The inverse is :

R =
4

3
I − 2

√
6

9
S cosH +

√
6

3
S sinH

G =
2

3
I +

√
6

9
S cosH −

√
6

3
S sinH

B = I +

√
6

3
S cosH (4.2)

[Pratt, 1991]. Several variations on this transformation are possible, depending

on whether I is defined as the mean intensity (as above) or the RMS intensity,

and what colour is used for the origin of the measurement of H (the above

uses the shade of blue defined by R = G = 0).

As far as the author is aware the RGB↔HIS transform is only, usually,

used for colour image enhancement purposes [see Ruiz, et al., 1977, for an

example involving Viking orbiter imagery], no one appears to have considered

using it for improving the segmentation of colour images in the manner pro-

posed here. Possibly, this is because of a fear of losing information (although

the intensity data can be made use of at a later stage), or because most multi-

spectral image segmentation work takes place in the field of remote sensing.

Here there are usually more than three spectral bands involved, and equations

4.1 & 4.2 do not easily generalise into an arbitrary number of dimensions.

However, given that we are not concerned with the transformed values having

physical meaning (other than the intensity), a suitable transform is :

I1 =
N∑

m=1

im

In = (n− 1)in −
n−1∑

m=1

im [2 ≤ n ≤ N] (4.3)

Image Segmentation 109

Figure 4.2: Original image [top], result of removing lighting effects by band
ratioing [bottom].

110 Chapter 4

Image Segmentation 111

Figure 4.3: Original image [top], result of removing lighting effects by trans-
formation and removal of intensity component [bottom].

112 Chapter 4

Image Segmentation 113

which has the inverse:

iN =
1

N
(I1 + IN)

in =
1

n
(I1 + IN −

N∑

m=n+1

im) [N − 1 ≥ n ≥ 2]

i1 = I1 −
N∑

m=n+1

im (4.4)

where the in are the pixel values in the spectral bands, the In are the pixel

values in the transformed bands, N is the number of bands, and the inverse

transform has to be done from n = N to n = 1.

For three spectral bands the forward transform becomes:

I1 = i1 + i2 + i3

I2 = i2 − i1

I3 = 2i3 − i2 − i1 (4.5)

and the inverse is :

i3 =
1

3
(I1 + I3)

i2 =
1

2
(I1 + I2 − i3)

i1 = I1 − i2 − i3 (4.6)

It can be seen that, since the in are taken to be independent, the In

are also independent. This means that the intensity information is uncoupled

from the colour information in the transformed space. Thus, the intensity can

be modified without the colour being affected. This is true for any number of

spectral bands.

In the program (see appendix A, subroutine NOLIGHT) the forward

transform, removal of intensity variations, and inverse transform are com-

bined into a single transformation matrix (which is normalised so as to keep

114 Chapter 4

the spectral values within the allowed range). This matrix is not defined be-

forehand, but calculated at run-time, based on the number of spectral bands

present in the data.

Figure 4.4 shows the result of applying the lighting removal process to

a real image (a part of the BBC testcard). When looking at it, it is interesting

to note how much the human eye relies on intensity variations for information

about the three dimensional nature of objects.

Of course the above assumption means that all the intensity variations

which are intrinsic to objects will also be removed, along with those due to

lighting effects. However, rather than having one object broken up over sev-

eral classes (as would happen if the lighting effects were not removed), this

will result in several, different, objects being put in the same class. Such

under-classification can be corrected for by adding a second stage segmenta-

tion process (which takes account of information other than just the colour),

whereas spurious over-classification is much more difficult to cure.

The one remaining case in which over-classification may still occur is

where a region, which a human would consider as being part of one object,

actually contains colour variations. This could be due to either to its being

composed of many different coloured sub-objects, or to its having a ‘colour

texture’. Most man-made objects are of the first type, and a grainy piece

of wood is an example of the second type. The correction of this type of

problem has to be left to the second (more ‘intelligent’) stage of any image

understanding process.

There are two other, minor, drawbacks to this technique. Firstly, it

assumes that, if there is more than one light source, they all have the same

spectrum – i.e. spurious results would be obtained if the technique was applied

to a scene illuminated from one side by predominantly red light, and from the

Image Segmentation 115

Figure 4.4: BBC testcard image [top], and the result of removing the lighting
effects [bottom].

116 Chapter 4

Image Segmentation 117

other by predominantly blue light. Secondly, it assumes that the light source

is, near enough, white in colour – i.e. a scene illuminated by predominantly

red light would still have a reddish cast to it after processing, unless further

steps were taken to remove any bias in the colour of the image. Neither of

these problems should seriously affect images of natural scenes however, unless

they are subject to unusual manmade lighting, or are taken near dawn or dusk.

4.5 The use of cooccurrence matrices, and edge de-

tection :

The cooccurrence matrix, of a single band image, is defined as:

S∆(i, j) =
∑

x

δ(I(x), i)δ(I(x+∆), j) (4.7)

where the δ are Kronecker delta functions, x is some position, (x, y), in the

image, ∆ is a displacement vector, and I(x) is the intensity of the image at

position x. Also, the summation has to be performed in such a way that both

x and x + ∆ lie within the image. Thus, the cooccurrence matrix element

S∆(i, j) contains the number of pairs of pixels (separated by the vector ∆) for

which the first pixel has intensity i, and the second has intensity j.

Normally the cooccurrence matrix of a small part of an image is used to

characterise the texture within that region. Consequently, most previous uses

of cooccurrence matrices for image classification have involved segmenting the

image on the basis of texture, either through the calculation of the Haralick

texture measures [Haralick, et al., 1973], or by a direct comparison of the

matrices for different parts of an image [Carbon & Ebel, 1988].

This work, however, involves an extension of Haddon & Boyce’s use of

whole image cooccurrence matrices for segmentation [Haddon & Boyce, 1990].

The idea behind this technique is that (provided |∆| is much less than the

118 Chapter 4

region size) homogeneous regions within an image will give rise to clusters of

data points along the leading diagonal of the matrix, and that discontinuities

in the image (edges) will contribute to clusters lying off of the leading diagonal.

Figure 4.5 shows an idealised whole image cooccurrence matrix, for an

idealised image. The image contains reasonably homogeneous regions which

fall into three different classes, these give rise to the three on-diagonal clusters,

A, B, & C. The number of data points in each of the clusters is determined

by the number of pixels in each of the classes. The off-diagonal widths of

the clusters are determined by the overall noise level in the image, and their

along-diagonal widths by the the sum of the noise level and the variation due

to texture within the regions of that class. Hence, the on-diagonal clusters are

elliptical in outline, with their major axes aligned along the diagonal. It can

be seen, from figure 4.5, that the regions in classes A & C are textured, but

that those in class B are not. The off-diagonal cluster AB is due to regions

of classes A and B having at least one common boundary at which motion

in the direction of the displacement vector takes us from a region of class A

to a region of class B. The off-diagonal cluster at CA is due to regions of

classes A and C having at least one common boundary at which motion in

the direction of the displacement vector takes us from a region of class C to a

region of class A. The off-diagonal clusters BC and CB show that regions of

classes B and C have common boundaries which involve movement from B to

C, in some cases, and from C to B, in others, when travelling in the direction

of the displacement vector. Finally, the size, and position, of the off-diagonal

clusters indicates that all of the boundaries are in the form of ‘step’ edges.

Figure 4.6 shows the whole image cooccurrence matrix for a synthetic

image. None of the regions in this image are textured, so all of the on-diagonal

clusters are roughly circular. Apart from that, all of the features are similar

Image Segmentation 119

j

i

B

A

C

AB

CA

CB

BC

Along diagonal cross-section

Frequency

Figure 4.5: The elements of an ideal cooccurrence matrix.

120 Chapter 4

0

0
32 64 96 128 160 192 224 256

32

64

96

128

160

192

224

256

Figure 4.6: Synthetic image [top], and its cooccurrence matrix, ∆ = (1, 0),
(logarithmic plot) [bottom].

Image Segmentation 121

to those seen in figure 4.5.

Haddon & Boyce’s work also involved using cooccurrence matrices pro-

duced with ∆ pointing in different directions to provide information for an

iterative improvement of the segmentation (‘relaxation labelling’). This makes

use of the fact that the shapes of the on-diagonal clusters give an indication of

the probability of a pixel, of a given intensity, being in a particular class, and

the off-diagonal clusters give an indication of the probability of a pixel being

on a boundary in the direction of the displacement vector. These probabilities

are then used as the starting values in the calculation of an ‘entropy of local

information’. The relaxation algorithm seeks to minimise this entropy by it-

eratively modifying the classifications given to the pixels in the segmentation.

At convergence, the final segmentation should be the most locally homoge-

neous one possible, which is still consistent with the original segmentation.

That is, single pixels, which differ in class from their neighbours (which are all

in the same class), will be given the same class as their neighbours (assuming

that they are not, actually, very much different from them), but the overall

relationships between the dominant regions should remain unchanged.

The cooccurrence matrices of a multi-band image may be defined to

be :

S
µν
∆
(i, j) =

∑

x

δ(Iµ(x), i)δ(Iν(x+∆), j) (4.8)

where everything is as before except that Iµ(x) is the intensity of the image at

x in band µ. However, it is debateable whether or not any useful information is

gained by considering µ 6= ν. Looking at different pixels in the same band, and

the same pixel in different bands will both, obviously, give useful information

(the first about spatial homogeneity, the other about spectral composition).

But, it is difficult to see how looking at different pixels in different bands will

be of any use. So, in this work, only cooccurrence matrices for which µ = ν

122 Chapter 4

will be considered. This has the added advantage of reducing the problem

from being proportional to N2 to being proportional to 2N .

The cluster location part of the problem can be further reduced to

N dimensions by using the fact that the region clusters must lie along the

leading diagonals of the matrices, and that their centres will be coincident

in the cooccurrence matrices and in the multi-dimensional histogram space

(i.e. data giving rise to a cluster centred at (a, a, b, b, c, c) in a six dimensional

cooccurrence matrix will also give rise to a cluster centred at (a, b, c) in the

corresponding, three dimensional, histogram space). Thus, the N leading

diagonals may be used as the one dimensional sub-spaces in the first stage

of the cluster analysis (the peak location), and the second stage (the tests of

local maximality) can be performed in the N–dimensional histogram space.

The actual pixel classification will still have to be performed in the full 2N–

dimensional cooccurrence space however.

Apart from extending the use of cooccurrence matrices from single band

images to multi-band images, there are three other important differences be-

tween this work and that of Haddon & Boyce.

Firstly, the removal of lighting effects (as discussed above) ensures that

the regions are more homogeneous than they would be in a single band image,

and so the clusters in cooccurrence space will be more compact (see figures 4.7

to 4.9 – n.b. the dark cross in the centre off figure 4.9 is a binning artefact).

Secondly, rather than doing relaxation labelling to improve the segmen-

tation, the information from different directions of ∆ is used in such a way

that the most region-like direction is used for segmentation purposes, and the

most edge-like direction is used for edge detection purposes. For example, in

figure 4.10 displacement vectors 1 & 4 both correspond to the most region-like

directions, because both ends of each vector lie within the same region and

Image Segmentation 123

0

0
32 64 96 128 160 192 224 256

32

64

96

128

160

192

224

256

0

0
32 64 96 128 160 192 224 256

32

64

96

128

160

192

224

256

Figure 4.7: Grey level cooccurrence matrices (∆ = (1, 0)) for band 1 of the
image in figure 4.2: without [top] and with [bottom] removal of lighting effects.

124 Chapter 4

0

0
32 64 96 128 160 192 224 256

32

64

96

128

160

192

224

256

0

0
32 64 96 128 160 192 224 256

32

64

96

128

160

192

224

256

Figure 4.8: Grey level cooccurrence matrices (∆ = (1, 0)) for band 2 of the
image in figure 4.2: without [top] and with [bottom] removal of lighting effects.

Image Segmentation 125

0

0
32 64 96 128 160 192 224 256

32

64

96

128

160

192

224

256

0

0
32 64 96 128 160 192 224 256

32

64

96

128

160

192

224

256

Figure 4.9: Grey level cooccurrence matrices (∆ = (1, 0)) for band 3 of the
image in figure 4.2: without [top] and with [bottom] removal of lighting effects.

126 Chapter 4

i

j

Region A

X

Y

Region B

1 2

3

4

IB IA

IB

IA 1 & 4

2

3

X Y

IB

IA

Intensity variation along line XY

Figure 4.10: Edge-like and region-like pixel pairings in image space [top], and
their corresponding contributions to cooccurrence space [bottom].

Image Segmentation 127

they, thus, give rise to the matrix entries which lie closest to (in fact, on)

the leading diagonal. Displacement vector 2 corresponds to the most edge-

like direction, because its two ends lie in different regions and, therefore, it

gives rise to the matrix entry which lies furthest from the leading diagonal.

Thus, either displacement vector 1 or displacement vector 4 would be used

in determining which class the pixel should belong to (both vectors will give

the same result), and displacement vector 2 would be used in determining the

edge strength at that point in the image. We could also record information

about the edge direction, but this has not been considered as part of this work,

largely because of memory restrictions on early versions of the program. As in

figure 4.10, the four displacement vectors used throughout this work (unless

otherwise stated) correspond to ‘north’, ‘north-east’, ‘east’, and ‘south-east’.

Thirdly, unless an image contains very sharp edges there will be no

well defined off-diagonal clusters. Figure 4.11 shows the sorts of off-diagonal

distributions which we get in cooccurrence space, for a variety of different edge

profiles, and figure 4.12 shows the whole image cooccurrence matrix for a the

BBC testcard image.

So, rather than trying to look for edge clusters which are unlikely to

be there, this work uses an edge probability function, in the cooccurrence

space, which is determined from the positions of the cluster centres (for an

example, with a single band image, see figures 4.13 & 4.14). Those parts of

the cooccurrence space which are far from the diagonal have a high probability

of being edge, as do those which lie between clusters which are close together.

Those parts of the space which lie close to the diagonal have a low probability

of being edge, as do those which lie within the clusters. The construction of

the function is, at present, entirely empirical, but it does give reasonably good

results, provided that the correct number of clusters are found during

128 Chapter 4

i

j

Intensity

x

IB

IA
IB

IA

IB IA

i

j

Intensity

x

IB

IA
IB

IA

IB IA

i

j

Intensity

x

IB

IA
IB

IA

IB IA

h

h

h

w

1
2

(I)

(I)

(I)

1
2

h

1
2

h

w

dx
dI

Figure 4.11: Edge profiles, and their corresponding contributions to a cooc-
currence matrix.

Image Segmentation 129

0

0
32 64 96 128 160 192 224 256

32

64

96

128

160

192

224

256

Figure 4.12: BBC testcard image [top], and its cooccurrence matrix, ∆ =
(1, 0), (logarithmic plot) [bottom].

130 Chapter 4

segmentation (figure 4.14).

In order to improve the edge detection properties of a cooccurrence

matrix based segmentation (and reduce the effects of noise on the region de-

tection) one can use the two halves of an edge detection filter in place of the

two pixel values, I(x) & I(x+∆).

The one drawback of using a wide filter for edge detection is that the

edges, so detected, get wider. To overcome this one can apply an edge thinning

algorithm such as Canny’s hysteresis thresholding [Canny, 1986], as shown in

figures 4.14 & 4.15.

The program (see appendix A) allows the user a choice of several dif-

ferent filter types. A Gaussian filter, a cubic spline filter, the Petrou filter

[Petrou, 1989], and the Spacek filter [Spacek, 1986]. Figures 4.16 to 4.21 show

the result of using the different filters, at different sizes, on the image from

figure 4.6. The edge maps have all had hysteresis thresholding applied to them

(with a low threshold of 0.1 and a high threshold of 0.9) before being overlain

on the segmentation.

In all the cases where more than the actual four classes has been found

the edge detection has suffered as a result. This is because the practice of in-

troducing a high edge probability between close clusters (see the top left corner

of figure 4.13) means that large numbers of non-edge pixels receive high edge

probabilities if one actual cluster is split between several false clusters. This

results in whole regions of the image appearing to be of high edge probability

(rather than just linear features) which causes problems for the edge-following

and edge-thinning parts of the HYSTER algorithm. The same effect can occur

even if the correct number of clusters is found. Usually this is because the high

edge probability incursions into the vicinity of the close clusters should really

be in the form of a pair of wedges, rather than a band right across the matrix

Image Segmentation 131

0

0
32 64 96 128 160 192 224 256

32

64

96

128

160

192

224

256

Figure 4.13: The edge probability function, in cooccurrence space, for the
image in figure 4.6 (8 clusters found during segmentation) [top], and the edge
probability image produced by mapping the image through it [bottom].

132 Chapter 4

0

0
32 64 96 128 160 192 224 256

32

64

96

128

160

192

224

256

Figure 4.14: The edge probability function, in cooccurrence space, for the
image in figure 4.6 using a 7–point Spacek filter (4 clusters found during seg-
mentation) [top], and the edge probability image produced by mapping the
image through it [bottom].

Image Segmentation 133

Figure 4.15: The result of applying Canny’s HYSTER algorithm to the edge
probability image in figure 4.14 (low threshold = 0.1, high threshold = 0.9).

(see figure 4.22). This would more accurately reflect the fact that a pair of pix-

els corresponding to a point near the leading diagonal are extremely unlikely to

be part of an edge, without losing the ability to find the edges between regions

which are spectrally similar. However, the wedges are rather difficult to formu-

late in the multi-dimensional space under consideration. When time permits a

more rigorous consideration of the form of the edge probability mapping this is

the main point which will need to be dealt with. Even if the correct number of

clusters are found, and the close clusters are dealt with sensibly, regions of the

image may still be given spuriously high edge probabilities. This is because

one component of the edge probability can be considered to be a measure of

the inaccuracy of the pixel’s classification. Under ideal circumstances this is

all very well, and may even be useful. However, if the locations, or widths, of

the clusters are not accurately determined, for some reason, then the edge

134 Chapter 4

Figure 4.16: Combined region segmentation and edge detection, using a 5–
point Gaussian filter (7 classes found during segmentation) [top], and a 5–point
cubic spline filter (5 classes found during segmentation) [bottom].

Image Segmentation 135

Figure 4.17: Combined region segmentation and edge detection, using a 5–
point Petrou filter (4 classes found during segmentation) [top], and a 5–point
Spacek filter (5 classes found during segmentation) [bottom].

136 Chapter 4

Figure 4.18: Combined region segmentation and edge detection, using a 7–
point Gaussian filter (4 classes found during segmentation) [top], and a 7–point
cubic spline filter (4 classes found during segmentation) [bottom].

Image Segmentation 137

Figure 4.19: Combined region segmentation and edge detection, using a 7–
point Petrou filter (4 classes found during segmentation) [top], and a 7–point
Spacek filter (4 classes found during segmentation) [bottom].

138 Chapter 4

Figure 4.20: Combined region segmentation and edge detection, using a 9–
point Gaussian filter (4 classes found during segmentation) [top], and a 9–point
cubic spline filter (4 classes found during segmentation) [bottom].

Image Segmentation 139

Figure 4.21: Combined region segmentation and edge detection, using a 9–
point Petrou filter (4 classes found during segmentation) [top], and a 9–point
Spacek filter (4 classes found during segmentation) [bottom].

140 Chapter 4

Figure 4.22: Band [top], and wedge [bottom] shaped high edge probability
incursions between close clusters.

Image Segmentation 141

probability mapping function will be the wrong shape. This means that some

of the pixels may receive the wrong edge probability. If the value is too low then

edges may become broken, or be missing completely, if the value is too high

then we will, again, get whole regions which appear to be edge-like, causing

confusion for the HYSTER algorithm.

It would appear that the Petrou filter gives the best results but, for rea-

sons of compatibility with old results, the Spacek filter will be used throughout

the rest of this work. Note that the detected edges do not always match the

region edges. This is because the blurring action of the filters does not affect

the edge detection and segmentation in the same way. The edge detector will

place the edge at the point of maximum slope on the edge ramp, whereas the

segmentation algorithm will place the edge halfway up the edge ramp. The

two do not necessarily coincide, especially as the ramp height increases.

4.6 Results using real images :

Figures 4.23 to 4.26 show the result of running the segmentation pro-

gram on the full colour version of the BBC testcard data (see figure 4.4), using

various different options.

Figure 4.23 is the segmentation which results when the image is not

smoothed, and the lighting effects are not removed. 22 classes have been

found, and the resulting regions are, mostly, very fragmented. This sort of

segmentation would only be useful, for anything other than data compression,

after a great deal of post-processing.

Figure 4.24 is the segmentation which results when the image is

smoothed, with a five point Spacek filter, but the lighting effects are still not

removed. This also conatins 22 classes. The regions are far less fragmented

now, but it would still be difficult to use this as the basis for any attempt to

142 Chapter 4

analyse the image.

Figure 4.25 is the segmentation which results when the image is not

smoothed, but the lighting effects are removed. 6 classes have been found,

and, although the regions show a certain amount of fragmentation, this is a

vast improvement on the previous two results.

Finally, figure 4.26 is the segmentation which results when the image is

smoothed, with a five point Spacek filter, and the lighting effects are removed.

This contains 6 classes, as with the previous result, but now the fragmentation

is minimal. Arguably there should be a ‘pink’ class for the clown’s face, but

this is so pale that it is not surprising that it has not been distinguished from

the ‘colourless’ objects. More information would need to be combined with

this segmentation before an interpretation could be attempted – for instance

the girl’s hair would need to be distinguished from her skin, and united into a

single region. This information may be able to be gleaned from the intensity

image, which we have discarded, particularly by analysing the textures in it.

But, as far as a segmentation on the basis of colour alone goes, this result is

probably as good as it is possible to get.

Figure 4.27 shows the edge probability image which results from the last

segmentation, and figure 4.28 shows the result of running Canny’s HYSTER

algorithm on it (with a high threshold of 0.9, and a low threshold of 0.1, as

with the previous cases). The edge probability map contains some regions

of high edge probability, as discussed in the previous section, and these have

caused some problems for HYSTER (in particular on the girl’s forehead). Also,

several real edges have been removed by HYSTER. It would be possible to

get these back by ‘tuning’ the thresholds, but since the main idea behind

the segmentation algorithm is to have no user intervention, this would rather

defeat the object. For this reason any further work on edge detection will have

Image Segmentation 143

Figure 4.23: Segmentation of the colour BBC testcard image, produced with-
out smoothing, or lighting effect removal.

Figure 4.24: Segmentation of the colour BBC testcard image, produced with
smoothing, but without lighting effect removal.

144 Chapter 4

Image Segmentation 145

Figure 4.25: Segmentation of the colour BBC testcard image, produced with-
out smoothing, but with lighting effect removal.

Figure 4.26: Segmentation of the colour BBC testcard image, produced with
both smoothing and lighting effect removal.

146 Chapter 4

Image Segmentation 147

Figure 4.27: Edge probability image for the BBC testcard.

Figure 4.28: HYSTER edge map for the BBC testcard.

148 Chapter 4

to be defered until after the problems with the edge probability mapping are

sorted out.

4.7 The coding of the segmentation algorithm :

The following pseudocode is only intended to give an outline of the

way in which the various algorithms were converted into a computer program.

The full, FORTRAN 77, program listing is given in appendix A. This has been

commented in as descriptive a manner as possible.

In the pseudocode, curly brackets have been used to indicate the parts

which were coded as separate subprograms (with the name of the correspond-

ing FORTRAN routine in square brackets). Comments are enclosed in hash

marks.

It is clear that the program is not as modular as it might be. This is

particularly true of the routines which perform the peak linkage (FINDPK) and

the segmentation (SEGMENT). These two parts of the program were the most

‘under development’ and, unfortunately, there was no time available to tidy

them up when they were completed.

The various parameters used, thresholds etc., were not ‘tuned’ to any

great extent, so they may well not be optimal.

##

Pseudocode description of the multi-spectral image

segmentation algorithm. P.J.Naylor 25/5/94.

##

[COOCSEG]{

Read in the data [DATAIN]{

Get the dimensions of the image.

Get the number of bands in the image.

For each band :

For each pixel :

Read in the pixel value.

Image Segmentation 149

##

In the range -128 to 127, so that it can be stored as a

single byte.

##

}

If there is more than one band :

Remove the lighting effects [NOLIGHT]{

Define the forward transformation matrix.

Invert the transformation matrix [MATRIX_INV].

Modify the inverse matrix so that it uses a total

intensity of zero.

Form the product of the two matrices.

For each pixel :

Apply the final transformation matrix.

}

Define the smoothing filter to use [FILTDEF]{

Get the user’s choice of filter type.

##

Canny (Gaussian), Cubic Spline, Petrou, or Spacek.

##

Get the user’s choice of filter size.

Define the appropriate filter.

}

If the filter size is greater than one :

Convolve the image with the filter [CONVOLVE]{

For each band :

For each pixel which does not involve the filter going

of the edge of the image :

Apply the smoothing filter.

}

Produce and analyse the cooccurrence matrices [GLCOOC]{

Initialise the number of peaks found in each band to zero.

For each band :

Form the leading diagonal of the cooccurrence matrix

[DIAG]{

Initialise the elements of the diagonal to zero.

For each pixel :

For each cooccurrence direction :

If the pair of pixels make a contribution to the

diagonal :

Add that contribution to the diagonal.

##

Contributions are actually included from just off of the

diagonal, so as to try and reduce the amount of noise.

##

}

Analyse the leading diagonal [HSTANAL]{

150 Chapter 4

Initialise the number of peaks found to zero.

Set the thresholding and smoothing parameters.

##

The threshold is 0.5% for multiband images, and 1% for

single band. The smoothing filter length is 5.

##

Smooth the diagonal.

Find the maximum in the diagonal, and record the

value.

While the current maximum is greater than the first

maximum times the threshold factor :

Calculate the standard deviation of the peak

associated with the maximum [SIGMA]{

Initially assume that the peak is very narrow.

##

A standard deviation of 1.0.

##

While the standard deviation does not converge :

If the difference between the area under the

assumed peak and the area under the real peak is

positive :

Increase the standard deviation.

##

By 10%.

##

If the difference between the area under the

assumed peak and the area under the real peak is

not positive :

Decrease the standard deviation.

##

By 10%.

##

}

Subtract the found peak from the diagonal.

##

Actually, it may be necessary to subtract a but more

than one peak’s worth, in order to make sure that the

whole of the ‘wings’ of the distribution are removed.

##

Record the details of the peak.

Find the new maximum in the diagonal.

Record the total number of peaks found in this band.

}

Sort the peaks into order [SORT].

If more than one peak was found :

For each peak :

If the next peak in the list is very close :

Image Segmentation 151

##

Less than 4 bins away.

##

Merge the two peaks.

Calculate the properties of the new peak.

Move all subsequent peaks up the list one place.

Reduce, by one, the record of the number of peaks

found.

Output the number of peaks found in this band, their

widths, and locations.

If there is more than one band :

Do the peak linkage tests [FINDPK]{

Set the lower limit on the size for the first test.

##

0.025% of the total number of pixels, or 200 pixels,

whichever is the larger.

##

Calculate the number of combinations of peaks

For each group of 1000000 combinations (candidates) :

##

This is because we can’t necessarily cope with all the

candidates in one go.

##

Initialise the number of pixels associated with each

candidate to zero.

For each pixel :

Find out which candidate is nearest in the feature

space.

##

Using hypercube decision boundaries, rather than

hyperellipses.

##

Add one to the number of pixels associated with

that candidate.

##

Only bother doing this if the number of pixels

associated with this candidate hasn’t reached the

threshold yet.

##

For each candidate :

If the number of pixels associated with this

candidate is greater than the lower limit :

Add this candidate to the list of surviving

candidates.

Record, and output, the number of surviving

candidates.

##

152 Chapter 4

Now try to improve the estimates of the class properties

a bit.

##

For each surviving candidate :

Initialise the associated class size, location, and

widths to zero.

For each pixel :

If the pixel is close to one or more candidates :

##

‘Close’ is defined as being within a Euclidean distance

of 10. This is to try and stop the calculation of

cluster properties being corrupted by nearby parts of

other clusters.

##

Classify it as belonging to the closest.

Calculate it’s contribution to the size, location,

and widths of the candidate with which it has been

associated.

Now we have a new set of candidate properties, for

each candidate :

Reset the class size to zero.

For each pixel :

If the pixel is close to one or more candidates :

Classify it as belonging to the closest.

Calculate it’s contribution to the size, location,

widths, and covariance matrix of the candidate

with which it has been associated.

For each candidate :

Invert the covariance matrix associated with it.

##

Using ‘Numerical Recipes’ routines. This is done using

eigenvectors/values in order to cope with the fact that

the distributions have been flattened by the removal of

the lighting effects. Values which would otherwise be

infinite are trapped and just made very large. Any

other inversion method would just fail.

##

Sort the candidates based on the size of cluster

with which they are associated, largest first

[SORT4].

Set the threshold which defines the ‘neighbourhood’ of

a candidate.

##

This is a transformed divergence of 1.7.

The transformed divergence saturates at a value of 2.0

when two vectors belong to different clusters.

##

Image Segmentation 153

For each candidate :

Set the most maxima-like candidate to be ‘none’.

For each candidate :

Calculate the divergence between the current pair

of candidates.

Change this to the transformed divergence.

If the transformed divergence is less than the

threshold :

Record which of the two candidates is most

maxima-like.

Overwrite the details of the current candidate with

those of the most maxima-like candidate in its

neighbourhood (this may be itself).

Go through the list of candidate and remove any

duplicate entries.

Reset the number of classes found to the number of

surviving candidates.

For each class :

Initialise the class size to zero.

##

Do a final recalculation of the cluster properties.

##

For each pixel :

Classify it as belonging to the closest class mean

vector (using a non-Euclidean distance measure).

##

The class (cluster) widths are used in the equation of

an ellipse so that the distance measure equals 1.0 at

the very edge of the volume which is taken to enclose

the cluster.

##

Calculate its contribution to the widths of the

class to which it has been assigned.

Sort the details of the classes by size, largest first

[SORT3].

Output the number of classes found, their mean

vectors and widths.

}

If there is only one band :

For each peak :

Make the peak details class details.

}

Segment the image on the basis of the classes found

[SEGMENT]{

Set the number of dimensions, in cooccurrence space, to be

twice the number of bands.

Initialise the segmented image, and the edge probability

154 Chapter 4

image, to be blank.

Find the minimum class width, over all the bands, for

use as the off-diagonal width of the classes.

##

This assumes that the least elliptical cluster is

circular. This is not necessarily true though. The

off-diagonal distribution should really be analysed in

order to get this value.

##

If there are more than ten classes :

For each class :

Find, and record, the ten classes which are most

similar to this class.

##

This was originally done to cover situations where

a hundred or more cluster centres still remained after

the peak linkage stage. It was pointless checking every

pixel against every class in every cooccurrence

direction.

##

For each pixel :

Initialise the non-Euclidean distance to the nearest

cluster centre to one.

For each cooccurrence direction :

##

‘North’, ‘north-east’, ‘east’, and ‘south-east’.

##

Set the direction vector.

Calculate the feature vector for the cooccurrence

pair.

Calculate the along-diagonal and off-diagonal

components.

If the pixel is currently unclassified :

For all the classes :

Calculate the distance between the feature vector

and the class mean vector.

If this is less than the currently recorded

minimum distance :

Record this as the new minimum distance.

Record the old minimum distance as the second

best.

Classify the pixel as belonging to this class,

and record the classification in the segmented

image.

Calculate the edge probability value, for this

pixel, based on the distances from the feature

vector to the nearest, and second nearest, cluster

Image Segmentation 155

centres, and record it in the edge probability

image.

##

This formula is currently very empirical. Look in

appendix A, if you have to.

##

If the pixel is already classified :

For the ten classes closest to the one that the

pixel is already in (or all of them, if there are

less than ten) :

Calculate the distance between the feature vector

and the class mean vector.

If this is less than the currently recorded

minimum distance :

Record this as the new minimum distance.

Record the old minimum distance as second best.

Classify the pixel as belonging to this class,

and record the classification in the segmented

image.

Calculate the edge probability value, for this

pixel, based on the distances from the feature

vector to the nearest, and second nearest, cluster

centres.

If the edge probability value is greater than the

currently recorded one, for this pixel :

Record the edge probability in the edge

probability image.

Write out the edge probability image [DATAOUT]{

##

The edge probabilities are actually stored as real

numbers, so they have to be scaled and converted to

bytes before they are output.

##

For each pixel :

Write out the pixel value.

}

Write out the segmented image [DATAOUT]{

For each pixel :

Write out the pixel value.

}

}

156 Chapter 4

157

CHAPTER 5
Analysis of Remotely Sensed Imagery

The use of remotely sensed imagery in geological/mineralogical explo-

ration, and environmental monitoring is reviewed. The image segmentation

program based on the algorithm described in chapters 2, 3, & 4 is then applied

to the sort of images which are of interest in these fields.

5.1 Geological & mineralogical surveying applica-

tions :

5.1.1 The requirements :

The chief purpose of carrying out a geological, or mineralogical, survey

is to locate deposits of useful (or otherwise valuable) materials, in order to be

able to extract them. Such materials could include precious metals [Bedell,

et al., 1990], base metals [Banninger, 1990], petrochemicals [Stavtser & Kara-

sev, 1990], and construction materials (e.g. limestone, clays, and aggregates)

[Stone, 1989].

5.1.2 The role of remotely sensed imagery :

The use of remotely sensed imagery, obtained from either airborne, or

spaceborne, platforms, allows surveying to be performed in areas in which it

would be expensive, difficult, or even impossible, to carry out field surveys.

It also allows a much wider view to be taken. A single LANDSAT image

covers an area roughly 185 km square, whereas a field survey will only give

details local to the sites visited.

158 Chapter 5

Having located an area of interest one can always then (if practical)

make a field survey of the region, in order to test the validity of the original

analysis, and provide more information.

5.1.3 The problems associated with the use of re-

motely sensed imagery :

There are two problems associated with using remotely sensed imagery,

in this context. The first is that the objects of interest are quite often obscured

by soil and/or vegetation. Or, if they are not obscured, then their surfaces

may have been altered by weathering. (Vegetation and weathering can give

clues to underlying structures though, see §5.1.4.)

The second problem is that one has to be careful when deciding what

resolution to work at. At too low a resolution, each pixel will contain a mix-

ture of different types of material, this will require the application of ‘mixture

modelling’ techniques [Foody & Cox, 1991]. At too high a resolution, a segmen-

tation of the image will begin to fragment, due to ‘unwanted’ inhomogeneity

in the data (see §5.2.3 for an example of this).

5.1.4 The information contained in the images :

Mineral deposits are, in general, small and buried. Thus, their detection

relies on the identification of the larger scale consequences of their existence,

or on the location of the sort of geomorphology which is required for (but

does not necessarily guarantee) their formation. For example: the presence of

metal ores will result in the alteration of the chemical composition of the rocks

around them; and a combination of permiable rocks overlain by impermiable

ones, and faulting, will result in regions where petrochemicals may become

trapped.

Analysis of Remotely Sensed Imagery 159

In arid areas, where there is little vegetation, the identification of sur-

face geological units can be made directly from their spectral responses. Where

there is weathering the responses will be modified from those which are ob-

tained from laboratory samples, but different rocks should still be distinguish-

able. Also, weathering imparts a texture to the surface which may be char-

acteristic of the rock type (in general, sedimentary rocks will be smooth, and

igneous rocks rough).

In non-arid, and vegetated, areas problems arise due to absorption fea-

tures being introduced into the spectra by the presence of water, and due to

the geological units being obscured by plant life. The presence of water in a

rock (and the quantity) can, however, be an important identifying feature, and

vegetation can itself play a role in the location of mineral deposits. Geobotany,

as the study of the effect on plant life of minerals is known, provides informa-

tion on two fronts. Firstly, particular plant species are known to be, relatively,

more abundant around deposits of particular minerals, since they are more

tolerant of high concentrations of those minerals in the soil and groundwater.

Secondly, plants may be only partially ‘poisoned’ by the presence of the min-

erals, so that they display a spectral signature which differs from that of a

‘healthy’ plant [Xu, et al., 1990].

Further information about surface, and sub-surface, geology can be

obtained from thermal infra-red (TIR) images, as a result of the physical

characteristics of rocks and soils. Figure 5.1 shows how warm and cool areas

in a pre-dawn TIR image can be related to subterranean structure [Loughlin,

1990]. Also, the difference between day-time and night-time TIR images of

the same scene can be used to distinguish between rock types on the basis of

their thermal inertia [Sabins, 1987].

Faulting will express itself in remotely sensed imagery as linear features,

160 Chapter 5

Figure 5.1: Pre-dawn thermal infra-red image interpretation [Loughlin, 1990].

Analysis of Remotely Sensed Imagery 161

with lengths varying from a few metres to hundreds of kilometres. Apart from

their importance in causing petrochemical traps (as mentioned above), they

also provide sites at which mineralisation can occur [Stefouli & Osmaston,

1984]. Not all linear features in a remotely sensed image are going to be faults

though. One must take into account other natural line-like objects, such as

streams, and man-made objects, such as roads and pipelines.

5.1.5 The role of automated analysis :

The features described above can be very subtle and cover, relatively,

small areas. A single (185km × 185km) LANDSAT scene plotted at 150 dpi (6

pixels/mm) will result in an image roughly 1 metre square. The analysis, by

eye, of such an image requires specialist training, patience, and concentration.

Also, as mentioned before, only three spectral bands can be presented to a

human interpreter at any one time.

An automatic analysis program, provided that it is written in conjunc-

tion with someone who has the necessary analytical know-how, suffers from

none of the above limitations. Therefore, it presents a cheap, and efficient,

tool for isolating areas of interest, to be further investigated by (human) eye.

Segmented images, with overlain edge images, can be used as geological maps

of an area (provided that they are used with care). And, finally, with the

attachment of a suitable ‘expert system’, there is the, future, possibility of a

full-blown ‘X marks the spot’ exploration technique.

5.2 Land use & environmental monitoring applica-

tions :

5.2.1 The requirements :

162 Chapter 5

Land use applications include census type analysis, e.g. the determina-

tion of the percentage of a particular region given over to particular land uses,

or crop types [Barnsley, et al., 1991; Sharman, 1989; Bocchi, et al., 1989]; and

the identification of areas of a given single land use, e.g. the location of illegal

crops [Image Processing magazine, 1992].

Environmental monitoring applications would usually involve looking

for changes in land use from one epoch to another. This could be in order

to check that environmentally sensitive areas are not being damaged [Singh,

1984; Cross, 1989], or in order to ensure that environmental commitments, are

being successfully met [Smith & Vaughan, 1991].

5.2.2 The role of remotely sensed imagery :

The expense, accessibility and large scale coverage factors are the same

as for geological/mineralogical applications. There is also the factor that,

whilst geologically/mineralogically interesting objects change on geological

time scales, the objects of interest in land use/environmental monitoring ap-

plications vary on much shorter time scales. For example: urban development

will cause changes on the scale of years/months; forest fires/deforestation and

crop cycles will cause changes on the scale of months/weeks; and the spread

of an oil slick will cause changes on the scale of weeks/days. Therefore, whilst

it would be feasible to carry out a one-off field survey for a geological ap-

plication, such is not the case with land use and environmental monitoring.

Regular imaging of the same area is one of the features of spacebourne remote

sensing systems: LANDSAT 4 & 5 have a repeat cycle of 16 days; and SPOT

(which has a normal repeat cycle of 26 days) has the ability to look sideways,

giving a possible repeat cycle of 2 or 3 days, depending on latitude. Airbourne

systems may be flown as, and when, necessary (funds permitting).

Analysis of Remotely Sensed Imagery 163

5.2.3 The problems associated with the use of re-

motely sensed imagery :

The main problem is that of choosing the most appropriate resolution to

use for a given application. Too low a resolution and the boundaries between

different land use types cannot be accurately determined. Too high a resolution

and one begins to see ‘unimportant’ variations in land use, e.g. trees or small

areas of grass in urban areas, or patches of bare earth in cultivated fields

(although the latter would, of course, be important if the application was a

calculation of farming efficiency [Malthus, et al., 1990]).

5.2.4 The information contained in the images :

Unlike in geological/mineralogical applications, the objects of interest

in land use/environmental monitoring applications are directly recognisable.

Different materials and different crop types will have different spectral re-

sponses [Richards, 1986]. Variations from the ideal response, for crops, will

indicate disease, or some other source of stress (drought, infertile soil, etc.)

[Ali & Aggarwal, 1977; Danson, et al., 1990].

Temporal variations in spectral response allow the tracking of the spread

of disease in crops, or they can be used to chart the ripening process and, thus,

determine the best time for harvesting [Kauth & Thomas, 1976].

Fires will, of course, be well defined in thermal infra-red imagery [Muir-

head & Cracknell, 1984].

5.2.5 The role of automated analysis :

As with geological/mineralogical applications, the limitations of human

interpretation, and the need for map production are good reasons for using

an automated approach. Also, in particular in land use applications, one

164 Chapter 5

may require precise numerical information, such as: the percentage of a crop

affected by disease; or the area of a town which is given over to residential

use compared with the area occupied by green spaces. Such details are readily

obtained from a suitably segmented image.

5.3 Results of image segmentations :

Figure 5.2 is a false colour composite of the first three principal compo-

nents of part of a LANDSAT TM image of a mountainous region in the Middle

East. Figure 5.3 shows the result of segmenting this image using the techniques

outlined in chapters 2–4. Bands 1–5, & 7 of the image were used (since the

thermal infra-red band is at a different resolution). The data was smoothed

with a seven point diameter circular Spacek filter prior to segmentation.

Unfortunately, the geological map of this area was not available for

inclusion in this work. However, since the segmentation is only done on the

basis of colour, it should really only be compared with the actual data, rather

than another interpretation of the scene which has been produced using far

more information.

Six classes have been found in the data. The only two which are readily

identifiable with known features are the regions of deep shadow (coloured

greeny-blue in the segmentation), and the river (coloured tan). There are a

large number of shadow regions due to a combination of the rugged nature of

the terrain and the Sun being low in the sky. The other classes correspond

roughly to the variations in the underlying rock type, but the segmentation

is rather more fragmented than one would want, if it was to be used as a

geological map. However, it would appear to be a fairly faithful representation

of the colour variations in figure 5.2.

Analysis of Remotely Sensed Imagery 165

Figure 5.2: False colour composite of LANDSAT TM scene.

Figure 5.3: Segmentation of LANDSAT TM scene.

166 Chapter 5

Analysis of Remotely Sensed Imagery 167

This is as much as can realistically be asked of such a low level al-

gorithm. Any attempt to produce at actual map (including identification of

rock types) would require the addition of some sort of artificial intelligence (or

knowledge based) stage.

Figure 5.4 is a false colour composite of the first three principal compo-

nents of the last seven spectral bands of part of an airborne thematic mapper

(ATM) scene showing the town of Blewbury, in Oxfordshire (there are eleven

spectral bands, and the spatial resolution is 5m). Figure 5.5 is the segmenta-

tion (using the last eight bands - the first three contain atmospheric distor-

tions) produced using the same method as for the previous data set. Figure

5.6, and table 5.1, show the land use types in the area. Figure 5.7 is another

part of the same scene showing Churn Farm. Figure 5.8 is its segmentation

(using all eleven bands), and figure 5.9, and table 5.2, show the land use. Note

that the colours used for displaying the segmentations and reference images

are not intended to match.

Nine classes have been found in the Blewbury image, and thirteen in the

Churn Farm one. There are three sources of differences between the segmen-

tations and the reference images. Firstly, there are regions which are classified

differently in the reference images but the same in the segmentations. These

are either due to unnatural divisions in the reference images (e.g. differentiat-

ing grassy areas on the basis of what they are used for), or to there being no,

discernable, spectral difference between the different land covers (e.g. different

cereal crops, or an unripe cereal crop and grass). This can be seen in figure

5.5 where most of the grass, and some of the barley, has been put in one class

(coloured aquamarine), and where most of the fields on the righthand side of

the image have been put in the same class (mauve) regardless of use.

168 Chapter 5

Secondly, there are regions which are classified the same in the reference

images but differently in the segmentations. These are either due to different

varieties of the same crop being sown in different fields, or to their being at

different stages of development. This is particularly obvious, in both images,

where the winter wheat is concerned. In figure 5.5 this crop is split between

two classes (black and mauve) with some fields being wholly in one class, or

the other, and some being split between the two (the top left quadrant of

the figure). In figure 5.8 the central field is split between three classes. It

would be interesting to know whether the fields were all sown at the same

time, whether or not they were all treated in roughly the same way, and where

the date when the image was taken fits into the plant’s development cycle.

It could well be that some fields contain ripe wheat (the black class in figure

5.5), some contain unripe wheat – which is being confused with the grass (the

mauve class in figure 5.5), and some contain plants which are in the process

of ripening (the inhomogeneously segmented fields).

Thirdly, there are regions which are homogeneously classified in the

reference images but not in the segmentations. These are either due to the

regions not actually being homogeneous (e.g. the ‘urban’, and ‘farm building’

classes), or to there being some hidden variation within the region (e.g. soil

quality, or different types of tree in wooded areas). This point can be seen

by looking at the variation in colour, within the fields, in the false colour

composites.

All of these differences really just go to reinforce the point that it is far

too simplistic a view to assume that colour, alone, can be used to characterise

an object, or region. Also, that the ‘idiot savant’ segmentation algorithm is

of little use for extracting information from a scene, without the addition of

some sort of ‘intelligent’ (artificial, or otherwise) knowledge based system.

Analysis of Remotely Sensed Imagery 169

Figure 5.4: False colour composite of Blewbury ATM scene.

Figure 5.5: Segmentation of Blewbury ATM scene.

170 Chapter 5

Analysis of Remotely Sensed Imagery 171

Figure 5.6: Blewbury ATM scene, reference data.

Winter Wheat

Winter Barley

Spring Barley

Oil Seed Rape

Pasture

Ley Grass

Other Grass

Peculiar Grass (no pesticides used)

Recreational Grass

Residential (built-up)

Bare Ground

Trees

Farm Buildings

Water

Roads (metalled)

Tracks and Paths

Water Pumping Station

Cemetery

Table 5.1: Land use types in Blewbury ATM scene.

172 Chapter 5

Analysis of Remotely Sensed Imagery 173

Figure 5.7: False colour composite of Churn Farm ATM scene.

Figure 5.8: Segmentation of Churn Farm ATM scene.

174 Chapter 5

Analysis of Remotely Sensed Imagery 175

Figure 5.9: Churn Farm ATM scene, reference data.

Winter Wheat
Winter Barley
Winter Beans
Peas
Lucerne
Ley Grass
Gallops
Pasture
Other Grass
Scrub
Plantation
Trees
Buildings
Metalled Roads
Concrete Tracks
Tracks and Paths

Table 5.2: Land use types in Churn Farm ATM scene.

176 Chapter 5

Analysis of Remotely Sensed Imagery 177

When taking a more general view of the quality of the segmentations,

three points should be noted. Firstly, the combination of the removal of the

lighting effects, plus the Spacek filtering, plus the use of directional information

from the cooccurrence matrices, means that the regions are, in general, large

and unbroken. This is not usually the case with class based segmentations.

It is, therefore, unnecessary for any post-processing to be carried out to im-

prove the local homogeneity of the segmentation (e.g. the relaxation labelling

mentioned earlier, or Besag smoothing [Besag, 1986]). This can represent a

considerable time saving.

Secondly, although the Spacek filtering has reduced the effects of the

noise, it has caused narrow regions to become enlarged (e.g. the river in figure

5.3), and neighbouring colours to ‘bleed’ into one another (as was seen with the

segmentation of the testcard image in chapter 4). This second effect results in a

spurious region appearing between any two real ones which are of very different

colour. This is particularly noticeable around the edges of the ‘gallops’ in the

Churn Farm segmentation. These problems will occur no matter which of the

‘proveably optimal’ filters are used. They are all, at heart, just weighted mean

filters. It should be possible to obtain much better results using an adaptive

filter, such as the modified trimmed mean (MTM) filter [Lee & Kassam, 1985;

Lee & Tantaratana, 1990], which will smooth the regions whilst leaving the

edges sharp. Unfortunately, there has not been sufficient time for such a filter

to be implemented in this work.

Thirdly, there is the problem of the regions which appear to be of quite

different colour in the colour composites, but which the algorithm puts in the

same class. The green and red field halfway up the lefthand side of figure 5.5

is one of the more obvious examples of this. The simple explanation of this

phenomenon is that it is merely a case of misclassification. However, there

178 Chapter 5

is a situation which would give rise to exactly the same result even if the

algorithm was working perfectly. Consider a cluster which has such a large

variance, in one, or more, dimensions, that the data points which correspond

to one end of the cluster are of a distinctly different colour to those at the

other end. A human interpreter, looking at the data points in image space,

will conclude that there are two, or more, distinct sets of data points in the

image. A cluster analysis algorithm, looking at the same data points in feature

space, will conclude that there is only one set of data points. Which of the

two interpretations is correct ?

As far as the identification of objects in the imaged scene is concerned,

it is the cluster analysis algorithm which has arrived at the correct conclusion.

There is only one class of object in the scene, albeit one with a large degree

of variance in it. The human interpreter has been “fooled” by his reliance

on colour for the analysis of the image. We could reformulate the segmen-

tation problem strictly in terms of identifying regions of different (humanly)

distinguishable colours, in which case the human interpreter would be correct,

and the algorithm incorrect. What we cannot do, unfortunately, is reconcile

the two views – the human interpreter cannot cope with visualising the high

dimensional feature space involved, and the algorithm cannot be given any

concept of “colour”. The two views are constrained to always give differing

interpretations of the same data set. It would be nice to be able to produce

quantitative values for the quality of the segmentations presented in this chap-

ter. However, as we have seen, it is extremely tricky comparing a segmentation

with an analysis produced by other means, either objectively (as in the case of

the land use maps), or subjectively (as in the case of the human interpretation

of the colour composites). In the final analysis the only measure of the quality

of a segmentation is how useful it is in solving the problem which you are

Analysis of Remotely Sensed Imagery 179

addressing. In the case of these segmentations, they are not especially useful

when it comes to land use identification (since they are far too fragmented),

but they might prove interesting to someone working on an analysis of crop

disease, or soil fertilty.

This may appear to be something of an anticlimax, but it seems foolish

to attempt to claim to have comprehensively solved the problem of multi-

spectral image segmentation when the precise nature of the problem is itself

in some doubt.

180 Chapter 5

181

CHAPTER 6

Image Compression

Various image compression techniques are reviewed. The advantages to

be gained from using the segmentation technique, which has been developed

in this work, as part of one of these techniques is discussed, and some results

are presented.

6.1 The requirements :

Sometimes it is necessary to greatly reduce the size of the data set, as-

sociated with an image, without any (or with a minimum) loss of information,

or image quality. This may be because the data has to be transfered very

quickly over narrow bandwidth communications channels (e.g. high definition

television (HDTV), or video telephones); or because there are extremely large,

and growing, quantities of data which need to be permanently archived (e.g.

data from remote sensing satellites).

There are eight basic classes of data compression, which are charac-

terised by whether they provide perfect (lossless) or visual quality reconstruc-

tion of the data, and by whether the encoding, and decoding, processes are fast

(video rates to seconds) or slow (minutes to hours). Different classes are ap-

propriate to different applications. For example, HDTV, and video telephones,

require visual quality, fast encoding, and fast decoding. Archival storage, on

the other hand, might be better served by lossless, slow encoding, and fast

decoding (depending on the exact specifications of the application).

182 Chapter 6

6.2 Existing techniques :

The basis of most techniques is ‘run length encoding’ [Gonzalez &

Wintz, 1987]. This involves replacing a sequence of identical data elements

with a token, representing the data value(s), and the number of occurrences.

There also needs to be a ‘look-up table’ to allow the tokens to be mapped back

to data values.

For example, figure 6.1 shows the pixel values in a small (8 by 8 pixels),

single band, ‘image’. This has been represented using 66 bytes – two to record

the dimensions of the image (in the ‘header’) and one for each of the pixel

values (in the ‘body’). This is a rather basic scheme, since it only allows us to

represent single band images with a dynamic range of no more than 256 grey

levels, and a maximum size of 256 by 256 pixels. More general schemes are

possible, obviously, but these require far more complex headers.

The header: 8 8

The body: 16 16 16 16 16 16 16 16

16 8 8 8 8 16 64 16

16 8 8 8 8 16 16 16

16 8 8 32 32 32 32 16

16 8 8 32 32 32 32 16

16 16 16 32 32 32 32 16

16 64 16 16 16 16 16 16

16 16 16 16 16 16 16 16

Figure 6.1: A simple 8 by 8 pixel, single band, ‘image’.

Figure 6.2 shows the result of run length encoding this image. The

header now contains not only the dimensions of the image but the look-up

table, preceeded by a byte indicating the number of entries in the table (4).

The table indicates that token 1 maps to a pixel value of 16, token 2 to a

value of 8, etc.. Note that, in the case of single band images we can actually

do without the look-up table, since the mapping is one to one, i.e. we could

Image Compression 183

use the actual pixel values as tokens. The body of the run length encoded

image consists of a series run length/token pairs, with the runs going from left

to right along each row of pixels, starting at the top left corner. Note that,

since we know the dimensions of the image, we can consider runs which ‘wrap

around’, from the end of one row to the beginning of the next, as single runs,

rather than as multiple runs which terminate at the end of each row. So, for

example, the run length/token pairs start off with 9 1 4 2 rather than 8 1 1

1 4 2.

The header: 8 8 4 16 8 64 32

The body: 9 1 4 2 1 1 1 3 2 1 4 2 4 1

2 2 4 4 2 1 2 2 4 4 4 1 4 4

2 1 1 3 14 1

Figure 6.2: Run length encoded version of the image in figure 6.1.

Some parts of the image now take more bytes to encode than they

did originally – the two single pixels, with value 64, now require two bytes

each rather than just one, for example. Some take the same, for example

the two pixel runs, with value 64, down the edges of the image. However,

because the long runs of pixels now take far fewer bytes to encode, we have,

overall, managed to compress the amount of image data from 66 bytes to 49,

a compression ratio of 1.3:1. If we do without the look-up table (so the run

length/token pairs become 9 16 4 8 1 6 1 64 ...), this reduces further, to

44 bytes, a compression ratio of 1.5:1. Note that, absolutely no information has

been lost due to the encoding process, the original data can be reconstructed

perfectly from the compressed data. This is done by simply expanding each of

the runs, and substituting the appropriate data value(s) for each of the tokens.

Doing a run length based encoding of the BBC testcard image (see

figure 6.9) results in a compression ratio of 1:1.02 – i.e. the file actually gets

184 Chapter 6

larger. This is because real images tend not to contain particularly long runs

of pixels which are all the same.

Run length encoded data can be further compressed, still allowing per-

fect reconstruction, using ‘Huffman coding’ [Gonzalez & Wintz, 1987]. In

its ideal form this involves determining the frequency of each occuring run

length/token pair, then replacing the most frequently occuring ones with to-

kens which require only a small amount of storage (less than a byte), and

replacing those which occur infrequently with larger tokens.

Table 6.1 shows the frequency of occurrence of each of the run length/

token pairs in the body of the run length encoded image in figure 6.2.

Run length/ Frequency Run length/ Frequency
token pair token pair

1 1 1 4 2 2
9 1 1 1 3 2
14 1 1 2 1 3
4 1 2 4 4 3
2 2 2

Table 6.1: Frequency of run length/token pairs in figure 6.2.

Figure 6.3 shows how the Huffman codes for the pairs are generated.

The first stage involves ordering the pairs according to their frequency of

occurrence, and then, two at a time, combining the pairs which occur least

frequently, until only two pairs remain. At each step, the frequency used is

the total frequency of the previously combined pairs, and the ordering of pairs

which occur with the same frequency is immaterial. In the second stage, the

tree structure, which was created in the first stage, is traversed in the opposite

direction (right to left, in the figure) and every time the tree branches a 0 is

appended to the bit pattern of the Huffman code on one branch, and a 1 is

appended to the code on the other. The lefthand side of the diagram shows

Image Compression 185

Stage One :

Run length/

 token pair : 1 2 3 4 5 6 7

 1 1

 9 1

14 1

 4 1

 2 2

 4 2

 1 3

 2 1

 4 4

1

1

1

2

2

2

2

3

3

1

2

2

2

2

2

3

3

2

2

2

2

3

3

3

2

2

3

3

3

4

3

3

3

4

4

3

4

4

6

4

6

7

7

10

Stage Two :

Frequency :

Step :

Run length/

token pair :

Huffman

code :

 1 1

 9 1

14 1

 4 1

 2 2

 4 2

 1 3

 2 1

 4 4

11010

11011

 1100

 100

 101

 010

 011

 111

 00

 1100

 1101

 100

 101

 010

 011

 111

 00

 100

 101

 010

 011

 110

 111

 00

 010

 011

 110

 111

 00

 10

 110

 111

 00

 01

 10

 00

 01

 10

 11

 10

 11

 0

 0

 1

Figure 6.3: Producing the Huffman codes for the run length/token pairs in
figure 6.2.

186 Chapter 6

the run length/token pairs and their corresponding Huffman codes. There are

three things to note about these codes. Firstly, they are only one of several

possible ways of Huffman coding the run length/token pairs. We could have

generated a completely different set of codes by combining different sets of pairs

in the first stage (whenever the frequencies were the same), or by assigning the

0’s and 1’s to the branches in a different order in the second stage. Secondly,

as stated earlier, the longest Huffman codes have been assigned to the least

frequently occurring run length/token pairs, and the shortest codes to the

most frequently occurring. Finally, and probably most importantly, there is

no pair of codes, of length i and j (j ≥ i) for which the first i bits of the two

codes match. Without this property it would be impossible to separate the,

variable length, Huffman codes from each other, when it comes to decoding

the data.

Encoding the body of our example image, using the Huffman codes that

we have just generated, reduces its size to 53 bits, a mere 6.625 bytes – giving

a compression ratio, for the body alone, of 9.7:1. However, we will have to

add a second look-up table to the header in order to facilitate the mapping

between the Huffman codes and the run length/token pairs. This will require

28 bytes – one to give the length of the table, followed by a triplet of bytes

for each of the nine table entrys (one for the Huffman code, and two for the

associated run length/token pair). Together with the two bytes for the image

size, and five for the token to pixel value look-up table, this gives a total size

of 41.625 bytes. This will need to be stored as 42 bytes, giving a compression

ratio of 1.6:1. This is not much better than that achieved by run length coding

alone. The dramatic decrease in the size of the body has almost been made

up for by the increase in the size of the header.

For this reason it is usual to have several pre-defined Huffman coding

Image Compression 187

schemes, for different distributions of run length/token pairs. One then en-

codes the data using the scheme associated with the distribution which most

closely matches that of the actual run length/token pairs, and a single token

is placed in the header to denote which of the schemes should be used for

decoding. The chosen set of codes are unlikely to encode the body quite as

efficiently as the proper ones would, but this will be much more than made

up for by the absence of the Huffman code to run length/token pair look-up

table. If we assume that our sample image would require 8 bytes to encode

the body using a suboptimal scheme (rather than 6.625), the total size of the

data describing the image would now be reduced to 16 bytes (the header will

contain 8 bytes – two for the image size, five for the token to pixel value look-

up table, and one for the Huffman scheme token). This gives a compression

ratio of 4.1:1.

Doing a Huffman based encoding of the run length encoded version of

the BBC testcard image gives a compression ratio of 1.2:1. Again, this is not

as good as the simple example because of the relatively small number of long

runs which occur in real images.

With dedicated hardware, there is no reason why run-length encoding,

and Huffman coding, cannot be implemented at video rates.

In order to reduce the size of the data set further one needs to preprocess

the image so that it becomes more locally homogeneous, so that the average

run length is increased. This, inevitably, leads to a loss of information, so the

resulting reconstruction of the image is imperfect.

One way of doing this is the discrete cosine transform (DCT) method

[ISO/JTC1/SC2/WG8 N800]. In this technique the image is split up into

small square patches (say 8 by 8 pixels), and each is then replaced by its two

dimensional discrete cosine transform [Press, et al., 1986]. Up to this point we

188 Chapter 6

have lost no information, however, now the pixel values in the resulting ‘image’

are scaled and quantised so that they all lie in the range 0 to 255, and cover

as much of that range as possible – this results in the loss of some information

about the original image. Next, some of the high frequency components in

the transformed patches are set to zero, this reduces, quite considerably, the

amount of information contained in the data. The ‘image’ is then run length

encoded, with the runs going diagonally across it, so as to maximise the length

of the runs with values of zero. Finally the whole thing can be Huffman coded.

As before, the last two steps involve no further loss of information.

The image is reconstructed by reversing the Huffman coding, and ex-

panding the runs to create the, modified, transformed patches. The pixels

which were not set to zero are scaled back to their original values, and the

inverse discrete cosine transform is applied to each of the patches. The quality

of the resulting reconstruction will depend on two factors, the patch size used

(this will determine how ‘blocky’ the reconstruction is), and how much of the

high frequency information was discarded (this will determine how much fine

detail is lost within each patch).

Figures 6.4 to 6.8 show some of the steps involved in applying this

technique to the simple image in figure 6.1. Firstly the image data is split

into 4 by 4 patches, and the patch size is recorded in the header. Secondly,

each patch is replaced by its discrete cosine transform (n.b. the zero frequency

component is in the top lefthand corner of each patch). Next, the new pixel

values are scaled and quantised, and the original maximum and minimum

values are stored in the header (n.b. they are real numbers, so they will

require four bytes each to store). The fourth stage is the discarding of high

frequency components from the patches. In this example we shall discard all

but the two lowest frequency components in each direction, i.e. all of the pixels

Image Compression 189

The header: 8 8 4

The body: 16 16 16 16 | 16 16 16 16

16 8 8 8 | 8 16 64 16

16 8 8 8 | 8 16 16 16

16 8 8 32 | 32 32 32 16

16 8 8 32 | 32 32 32 16

16 16 16 32 | 32 32 32 16

16 64 16 16 | 16 16 16 16

16 16 16 16 | 16 16 16 16

Figure 6.4: DCT encoding, stage one - split the image into patches.

The header: 8 8 4

The body: 208.0 47.0 24.0 81.0 | 336.0 75.3 -64.0 52.7

47.0 28.0 0.0 4.0 | 58.3 -9.0 -39.6 7.0

24.0 0.0 -8.0 0.0 | 8.0 8.0 8.0 8.0

81.0 4.0 0.0 28.0 | 69.7 41.0 39.6 25.0

320.0 70.0 8.0 58.3 | 352.0 118.6 0.0 73.4

75.3 -9.0 8.0 41.0 | 146.0 62.6 0.0 24.0

-48.0 -50.9 8.0 50.9 | 48.0 27.3 0.0 4.7

52.7 7.0 8.0 25.0 | 78.1 24.0 0.0 17.4

Figure 6.5: DCT encoding, stage two - form the discrete cosine transform of
the patches.

The header: 8 8 4 352.00 -64.00

The body: 167 68 52 89 | 247 86 0 72

68 57 39 42 | 75 34 15 44

54 39 35 39 | 44 44 44 44

89 42 39 57 | 82 65 64 55

237 82 44 75 | 255 113 39 85

86 34 44 65 | 130 78 39 54

10 8 44 71 | 69 56 39 42

72 44 44 55 | 88 54 39 50

Figure 6.6: DCT encoding, stage three - scale the values and quantise them.

190 Chapter 6

The header: 8 8 4 352.00 -64.00

The body: 167 68 0 0 | 247 86 0 0

68 57 0 0 | 75 34 0 0

0 0 0 0 | 0 0 0 0

0 0 0 0 | 0 0 0 0

237 82 0 0 | 255 113 0 0

86 34 0 0 | 130 78 0 0

0 0 0 0 | 0 0 0 0

0 0 0 0 | 0 0 0 0

Figure 6.7: DCT encoding, stage four - discard high frequency information.

The header: 8 8 4 352.00 -64.00

14 167 68 0 57 247 237 86 75 82 34 255 113 130 78

The body: 1 1 2 2 1 3 1 4 5 3 1 5 3 3

1 6 1 7 1 8 2 3 1 9 1 7 1 3

1 10 3 3 1 10 12 3 1 11 5 3 1 12

1 13 4 3 1 14 12 3

Figure 6.8: DCT encoding, stage five - run length encode the data, diagonally.

outside of the top left quadrant of each patch are set to zero. Note that, if we

had discarded all but the zero frequency component, the reconstructed image

would simply be the original reduced to a resolution equal to the patch size.

Finally, the ‘image’ is run length encoded, with the runs going diagonally from

upper right to lower left, starting at the top lefthand corner.

At this stage we are using 76 bytes to encode the data, and by Huffman

coding we might expect to reduce this to about 15 bytes – a compression ratio

of 4.4:1. This is slightly better than was acheived by using run length encoding

and Huffman encoding alone, but not worth the loss in quality of the image –

in fact the encoded data that we have left produces a reconstruction which is

unrecognisable as the original.

In the case of a real image the runs of zeroes would be longer, even if

less high frequency information was discarded, and larger patch sizes can be

Image Compression 191

Figure 6.9: BBC testcard image – original [top], reconstruction from DCT
based compression [bottom].

192 Chapter 6

Figure 6.10: BBC testcard image reconstructed from a DCT based compres-
sion, with a compression ratio of 100:1.

used. This results in a good quality reconstruction from even higher com-

pression ratios. Figure 6.9 shows the single band version of the BBC testcard

image, both in its original form and as reconstructed from a DCT based com-

pression. The compression factor achieved is 6.2:1, and the reduction in image

quality is unnoticeable. Forcing a higher compression factor, by using larger

patches and discarding more frequency components, would result in quite ob-

vious imperfections appearing. Figure 6.10 shows the, rather extreme, case of

forcing a compression factor of 100:1.

Again, with specialised hardware, DCT encoding and decoding can be

achieved at video rates.

Another way of increasing the local homogeneity of an image is to seg-

ment it. A well segmented image should contain fairly large homogeneous

Image Compression 193

regions which will run length encode efficiently. If the segmentation does not

constitute a sufficiently good representation of the image, then a second im-

age, composed of correction terms, can be encoded separately using one of the

previously discussed methods. Most of this correction image should be zero, or

close to zero, so it will encode reasonably efficiently. The two images together

will need to occupy less space than a straight compression of the original image

in order for the approach to be worthwhile.

Since segmentation does produce such large and, very, homogeneous

regions, we can use an encoding technique which is even more efficient, in

this sort of case, than run length encoding. This is boundary following, or

contour, encoding [Gonzalez & Wintz, 1987]. This makes use of the fact that,

for sufficiently large regions, with smooth outlines, the number of pixels around

the perimeter of the region will be considerably less than the number of pixels

in the region, and the shape of the region will be completely described by the

shape of its outline.

The major complication with boundary following encoding is figuring

out what order the boundaries should be encoded in. Consider the example

image in figure 6.1 (it is sufficiently homogeneous for us to take it as already

having been segmented). We can either imagine this to be a jigsaw, with

the regions slotting into one another, or a montage, with the regions lying

one on top of another. If we take the former view the order in which the

regions are dealt with is immaterial, but we will end up encoding the outlines

of the four interior regions twice each – once as the shape of the boundaries

of those regions, and once as the shape of the ‘holes’ into which they slot.

This redundancy of information will result in a reduction in the efficiency of

the compression. Also, since we do not have any way of predicting how many

holes there may be in a region we will either have to encode the number of

194 Chapter 6

boundaries that each region possesses, or insert markers between the sets of

boundaries which describe each region. Both of these approaches will, again,

reduce the efficiency of the compression. However, if we take the montage

view we have only to descibe the outer boundary of each region. Then, during

the reconstruction of the image the ‘foreground’ regions will just be ‘drawn’

on top of the ‘background’ ones. There is now only one boundary description

per region so there will be no need to place markers between them, since the

end of each description can be determined by the fact that it must return to

the starting point. With the montage view it is necessary, however, to ensure

that the regions are encoded going from the background to the foreground,

otherwise, during reconstruction, foreground regions may be overdrawn by

background ones.

Figure 6.11 shows the result of doing a simple boundary following en-

coding of the image in figure 6.1. In this example the header is the same as

for run length encoding. The first byte of the body indicates that the back-

ground intensity is to be set to that specified by the first entry in the pixel

value look-up table. Note that, there is no point in specifying the shape of

the background region, since it is the same shape as the image. The next two

bytes give the coordinates of the top lefthand vertex of the first pixel in the

first region (the coordinates are relative to the top lefthand corner of the im-

age). There then follow a series of pairs of numbers which define the boundary

of the region – the first of each specifies how long the boundary segment is,

the second its direction (0 ⇒ right, 1 ⇒ down, 2 ⇒ left, 3 ⇒ up). These two

values can be stored in a single byte, six bits for the length and two for the

direction. After six segments we have returned to the starting point, and the

next byte indicates what intensity to fill the region with (by reference to the

look-up table). The process is then repeated for the other three regions.

Image Compression 195

The header: 8 8 4 16 8 64 32

The body: 1

1 1 4 0 2 1 2 2 2 1 2 2 4 3

2

6 1 1 0 1 1 1 2 1 3

3

3 3 4 0 3 1 4 2 3 3

4

1 6 1 0 1 1 1 2 1 3

3

Figure 6.11: Boundary following encoding of the image in figure 6.1.

The total encoded size is 38 bytes, giving a compression ratio of 1.7:1.

This is slightly better than that achieved by simple run length encoding. How-

ever, although the regions in this image are large compared with the image

size, they are, in absolute terms, very small. If the image was scaled up by a

factor (α) in each direction, the original image size would go up as α2 (ignoring

the header), the run length encoded verion would go up, roughly, as α (there

would be about α times as many runs, each α times longer than before), but

the size of the boundary following encoded version would remain the same

(there would be the same number of regions, each with the same number of

boundary segments, the segments would just be α times longer). This means

that the compression ratio for run length encoding will go up as α as the im-

age size increases, but for boundary following encoding it will go up as α2.

Doubling the size of the image would give compression ratios of about 2.7:1

for run length encoding, and 6.9:1 for boundary following. Quadrupling the

size gives ratios of about 5.4:1 and 13.8:1 respectively, a significant difference.

In fact the compression ratio for the boundary following is getting to the sort

of values associated with DCT encoding, and this is before doing any Huffman

coding of the segment length/direction pairs.

Unfortunately the author did not have time to code up any implemen-

196 Chapter 6

tations of boundary following encoding techniques, so compression factors for

real images are not available.

An example of encoding using segmentation and boundary following is

Moran & Morris’s ‘region and texture’ (RAT) method [1989]. In this technique

the image is segmented using a region growing algorithm, and the segmented

(region) image is then encoded using a boundary following technique due to

Biggar & Constantinides [1987]. The difference between the segmented image

and the original (in Moran & Morris’s terms, the texture) is DCT encoded.

The RAT method is intended for use in the field of HDTV, and it is

interesting to see how Moran & Morris extend their algorithm to work with

multi-spectral images. Rather than encoding each of the three (red, green, and

blue) bands separately, they form the total intensity image (1
3
[red+green+blue])

and use this to produce a single pair of region and texture images to be en-

coded. The only colour information that is recorded is the average colour of

each of the regions. The rationale behind this is that, since the application

only requires good visual quality reconstruction, we can make use of the fact

that the human eye/brain pays more attention to intensity variations, when

analysing an image, than it does to colour variations. This means that it is not

absolutely necessary for the region image to describe every subtle variation in

colour, nor is it necessary for colour error terms to be calculated.

This approach means that segmentation based compression of multi-

spectral images has a built in headstart on any other technique. That is, no

matter how many bands there are in the original image, we only ever need to

encode two (the region and error images). So, whereas with non-segmentation

based compression algorithms the size of the compressed data goes up roughly

with the number of spectral bands, and the compression ratio remains con-

stant, with a segmentation based approach the size of the compressed data re-

Image Compression 197

mains constant, and the compression ratio goes up with the number of bands.

With a seven band LANDSAT data set we would be looking at a compression

ratio of about 3.5:1 even if the region and error images received no further

compression.

The disadvantage with segmentation based techniques is that they only

provide slow encoding – the region growing technique used by Moran & Morris

takes the best part of an afternoon to segment a single television type image

(in software). Whether or not a very parallel implementation, in hardware,

can achieve segmentation at video rates remains to be seen.

However, reconstruction would be quick and potentially very high com-

pression is possible. This makes segmentation based encoding suitable for

some applications involving the archiving of imagery, particularly remote sens-

ing imagery where large numbers of spectral bands are common. It will not be

suitable for those archiving applications where the reconstructed data is to be

analysed quantitatively, though, because of the large amount of information

lost in the segmentation process.

6.3 Use of the new segmentation technique :

The segmentation technique described in this work offers two possible

advantages over that used by Moran & Morris. Firstly, it is definitely quicker

– taking something like ten minutes to segment the sort of images that Moran

& Morris are dealing with. Secondly, it could enable higher compression ratios

to be attained. There are two reasons for this. In the first place, the new

segmentation technique is class based rather than region based. This means

that we only need to record colour information for each of the classes in the

image (typically ten or twenty in number), rather than for each of the regions

(over a thousand in Moran & Morris’s segmentations). In the second place,

198 Chapter 6

the removal of the lighting effects from the image goes a long way towards

guaranteeing a segmentation composed of a small number of large regions,

which is what is needed for boundary following encoding to work at its most

efficient.

Consider figure 6.12. In this idealised case (regular square regions) we

can see that the total number of boundary segments in the image is propor-

tional to the number of regions, and the total length of all the boundaries is

proportional to the square root of the number of regions. Now, the size of

an image compressed using a boundary following technique is roughly pro-

portional to the total number of boundary segments in the image. So, if the

number of boundary segments required to define the shape of a region is inde-

pendent of the size of the region (as it is in figure 6.12) we would expect the

compression ratio for this approach to be inversely proportional to the number

of regions found. This is not likely to be the case though, since the larger a

region is the more scope there is for it to have a highly convoluted boundary.

In the worst case the total number of boundary elements will equal the total

length of all of the boundarys, and we have just seen (from the idealised ex-

ample) that we can expect the total length of all the boundaries to be roughly

proportional to the square root of the number of regions. This means that, if

the new segmentation technique can reduce the number of regions in the seg-

mentation by a factor of ten or twenty, say, we could increase the compression

ratio by a factor of about three or four.

The new segmentation technique cannot just be dropped straight into

the RAT method though. Since the intensity information was removed from

the image prior to segmentation, the segmented image will contain only infor-

mation on the colours in the image. Therefore, the texture image needs to be

replaced by an intensity image. This is unlikely to DCT encode quite as

Image Compression 199

No. regions = 1

No. boundary segments = 4

Total boundary length = 32

No. regions = 4

No. boundary segments = 16

Total boundary length = 64

No. regions = 16

No. boundary segments = 64

Total boundary length = 128

No. regions = 64

No. boundary segments = 256

Total boundary length = 256

Figure 6.12: Variation of boundary quantities with the number of regions.

efficiently as Moran & Morris’s error image, but, hopefully, it will not use up

all of the gains made on the region coding side.

6.4 Results :

Figure 6.13 shows the full, three band, version of the BBC testcard

image. Figure 6.14 is the result of segmenting it using the new technique. Six

classes have been found, and the image is divided into only about fifty regions.

The regions have each been filled with the average colour of the class to which

they belong. Figure 6.15 is the intensity component of figure 6.13, which has

been compressed and uncompressed using a DCT based algorithm. When the

intensity image is applied to the, coloured, segmented image in HIS space (see

chapter 4), figure 6.16 is the result. There is a large amount of bleaching in

the faces (the clown’s has lost all colour information) – this is the reverse of

200 Chapter 6

the deep shadow problem seen in chapter 5. Other than that the result is

reasonably acceptable. It may be possible to reduce the bleaching problem

by deliberately splitting any ‘colourless’ cluster into pale versions of the six

primary and secondary colours (red, green, blue, cyan, magenta, and yellow),

but that is only going to be worth doing if the problem exhibits itself in more

than this one image.

Figure 6.17 shows the full colour version of the common image process-

ing test image ‘Lenna’. Figure 6.18 is the reconstruction from the segmentation

based compression. This is actually quite good.

These reconstructions, even that of ‘Lenna’, whilst of acceptable visual

quality, are far from good enough for use in the field of HDTV. This is because

we have discarded a lot of information in the segmentation process. It is of the

sort of quality which would be alright for use with video telephones, or some

archiving applications, though.

Unfortunately, the lack of an implementation of a boundary following

encoding algorithm, and the unavailability of a detailed account of Moran

& Morris’s method, has meant that it has not been possible to make any

quantitative comparisons between the two segmentation approaches.

6.5 Future possibilities :

Moran & Morris’s idea of splitting an image into a combination of a

set of coloured regions and a greylevel image containing nothing but texture

information opens up an avenue of investigation which could lead to even

higher compression ratios.

For a long time it has been possible to segment an image on the basis of

the textures that it conatins, usually by splitting the image into small patches

and comparing the Haralick texture measures obtained from each of them

Image Compression 201

Figure 6.13: BBC testcard, original image.

Figure 6.14: BBC testcard, segmented image.

202 Chapter 6

Image Compression 203

Figure 6.15: BBC testcard, intensity image.

Figure 6.16: BBC testcard, reconstructed image.

204 Chapter 6

Image Compression 205

Figure 6.17: Lenna, original image.

Figure 6.18: Lenna, reconstructed image.

206 Chapter 6

Image Compression 207

[Haralick, et al., 1973; and Carbon & Ebel, 1988]. If the texture image, that

we are dealing with in the original RAT method, was to be segmented, it too

could be encoded using the boundary following method, rather than DCT.

Unfortunately, the Haralick texture measures are non-invertible – that

is, although we can calculate them for each texture region, and store them in

the compressed image, they cannot be used to reconstruct the texture image

when it comes to doing the uncompression. However, Rabe [1991] has been

working on a representation of texture which is based on the Ising model, from

statistical mechanics. This not only allows the texture in an image patch to

be parameterised, and hence segmented, but the parameters can be used to

regenerate a swatch of texture which looks the same as the original.

Sadly, commitments to other work have meant that it has not been

possible for this potentially profitable area to be explored.

208 Chapter 6

209

CHAPTER 7

Comparison with existing techniques

The performance of the proposed cluster analysis technique is compared

with that of two well established techniques. The comparison is made on the

basis of their relative speeds, and the quality of their results. It is shown that,

whilst looking promising, the proposed technique still requires some develop-

ment.

In order that they could be compared with the proposed technique,

Forgy’s method and MacQueen’s k-means were implemented in FORTRAN 77

(see appendix B). The implementation of the proposed method used for the

comparisons was a slimmed down version of that used to produce the seg-

mentations in the preceeding chapters – it only performed cluster location,

with none of the image processing specific steps. Neither of the hierarchical

techniques, discussed in chapter 1, were included in these comparisons because

they are unsuitable for use with large numbers of data points (see §1.4), and

the proposed technique is unsuitable for use with small numbers of data points

(because of the problem of noise on the one dimensional histograms, see §§ 1.1

& 2.2).

The stopping criterion used for Forgy’s method was that the mean

squared error of the classification should have ceased to decrease. This is not

necessarily the best choice, but it does remove the possibility of rogue data

causing the algorithm to iterate indefinitely.

For the data sets used in these comparisons, a set of cluster attributes

210 Chapter 7

– the cluster position, the cluster width, and the probability of a data point

belonging to a particular cluster – were selected at random (with some con-

straints, so as to prevent too wide a range of positions, or unreasonably large

values for the cluster widths). The data points themselves were then selected

at random so that, en mass, they produced Gaussian density distributions

of the required position, standard deviation, and height. The details of the

various distributions used are given in tables 7.1 to 7.9.

p(Ω) λ2 (mean) λ3 (standard deviation)

Ω1 0.16 216.07 11.75
Ω2 0.28 212.48 10.36
Ω3 0.26 109.89 5.32
Ω4 0.31 230.20 11.28

Table 7.1: Details of 1 dimensional; 4 class; 64000 sample data set.

p(Ω) λ2 (mean) λ3 (standard deviation)

Ω1 0.13 (216.07, 133.46) (11.75,11.02)
Ω2 0.29 (118.88, 53.01) (7.35, 9.17)
Ω3 0.33 (219.81, 131.19) (7.13, 9.07)
Ω4 0.25 (36.28, 70.15) (4.33, 5.69)

Table 7.2: Details of 2 dimensional; 4 class; 64000 sample data set.

p(Ω) λ2 (mean) λ3 (standard deviation)

Ω1 1.00 (216.07, 133.46, 194.10, 109.89) (11.75, 11.02, 7.67, 5.32)

Table 7.3: Details of 4 dimensional; 1 class; 64000 sample data set.

Comparison with Existing Techniques 211

p(Ω) λ2 (mean) λ3 (standard deviation)

Ω1 0.34 (216.07, 133.46, 194.10, 109.89) (11.75, 11.02, 7.67, 5.32)
Ω2 0.66 (230.20, 103.74, 157.99, 36.28) (11.27, 8.11, 8.80, 4.33)

Table 7.4: Details of 4 dimensional; 2 class; 64000 sample data set.

p(Ω) λ2 (mean) λ3 (standard deviation)

Ω1 0.17 (216.07, 133.46, 194.10, 109.89) (11.75, 11.02, 7.67, 5.32)
Ω2 0.33 (230.20, 103.74, 157.99, 36.28) (11.27, 8.11, 8.80, 4.33)
Ω3 0.21 (63.46, 20.42, 200.64, 36.27) (8.88, 6.14, 9.45, 7.78)
Ω4 0.30 (200.82, 52.24, 89.47, 83.19) (6.88, 6.12, 7.82, 11.63)

Table 7.5: Details of 4 dimensional; 4 class; 8000, 16000, 32000, 64000, 128000,
& 256000 sample data sets.

p(Ω) λ2 (mean) λ3 (standard deviation)

Ω1 0.07 (216.07, 133.46, 194.10, 109.89) (11.75, 11.02, 7.67, 5.3)
Ω2 0.14 (230.20, 103.74, 157.99, 36.28) (11.28, 8.11, 8.80, 4.33)
Ω3 0.09 (63.46, 20.42, 200.64, 36.27) (8.88, 6.14, 9.45, 7.78)
Ω4 0.13 (200.82, 52.24, 89.47, 83.19) (6.88, 6.12, 7.82, 11.63)
Ω5 0.10 (123.29, 154.97, 112.03, 218.04) (6.57, 10.62, 6.07, 11.14)
Ω6 0.15 (137.47, 158.77, 144.32, 154.72) (11.46, 6.08, 11.36, 10.03)
Ω7 0.18 (148.82, 155.24, 119.22, 206.08) (8.68, 11.22, 11.99, 7.46)
Ω8 0.13 (16.74, 24.01, 87.59, 40.76) (7.39, 11.50, 11.63, 8.87)

Table 7.6: Details of 4 dimensional; 8 class; 64000 sample data set.

212 Chapter 7

p(Ω) λ2 (mean) λ3 (standard deviation)

Ω1 0.04 (216.07, 133.46, 194.10, 109.89) (11.75, 11.02, 7.67 5.32)
Ω2 0.07 (230.20, 103.74, 157.99, 36.28) (11.28, 8.11, 8.80, 4.33)
Ω3 0.05 (63.46, 20.42, 200.64, 36.27) (8.88, 6.14, 9.45, 7.78)
Ω4 0.06 (200.82, 52.24, 89.47, 83.19) (6.88, 6.12, 7.82, 11.63)
Ω5 0.05 (123.29, 154.97, 112.03, 218.04) (6.57, 10.62, 6.07, 11.14)
Ω6 0.07 (137.47, 158.77, 144.32, 154.72) (11.46, 6.08, 11.36, 10.03)
Ω7 0.09 (148.82, 155.24, 119.22, 206.08) (8.68, 11.22, 11.99, 7.46)
Ω8 0.06 (16.75, 24.01, 87.59, 40.76) (7.39, 11.51, 11.63, 8.87)
Ω9 0.05 (117.61, 228.48, 44.93, 53.33) (8.03, 5.23, 8.91, 11.96)
Ω10 0.07 (49.02, 92.06, 103.92, 45.83) (9.48, 7.19, 10.41, 5.76)
Ω11 0.07 (135.68, 89.93, 82.97, 31.45) (7.21, 11.43, 5.65, 10.30)
Ω12 0.08 (107.33, 215.22, 120.36, 54.61) (6.49, 10.12, 7.31, 4.12)
Ω13 0.05 (129.72, 227.54, 174.62, 110.28) (5.75, 9.50, 5.55, 7.58)
Ω14 0.06 (53.85, 99.59, 116.98, 55.13) (9.85, 7.31, 4.02, 9.21)
Ω15 0.05 (207.40, 110.44, 168.86, 31.40) (7.11, 11.20, 4.10, 5.64)
Ω16 0.08 (25.50, 235.90, 221.79, 175.91) (5.38, 4.90, 6.96, 9.65)

Table 7.7: Details of 4 dimensional, 16 class, 64000 sample data set.

p(Ω) λ2 (mean) λ3 (standard deviation)

Ω1 0.18 (216.07, 133.46, 194.10, 109.89, (11.75, 11.02, 7.67, 5.32,
160.68, 219.81, 131.19, 150.50) 11.64, 7.13, 9.07, 4.72)

Ω2 0.16 (70.15, 152.54, 75.85, 168.46, (5.69, 4.16, 10.59, 4.72,
121.70, 200.82, 52.24, 89.47) 8.35, 6.88, 6.12, 7.82)

Ω3 0.24 (229.66, 123.29, 154.97, 112.03, (6.13, 6.57, 10.62, 6.08,
218.04, 167.59, 224.99, 74.23) 11.14, 8.34, 9.10, 8.58)

Ω4 0.42 (154.72, 227.32, 147.17, 218.30, (10.03, 8.74, 8.97, 7.69,
239.76, 112.88, 16.75, 24.01) 10.79, 8.26, 7.39, 11.51)

Table 7.8: Details of 8 dimensional, 4 class, 64000 sample data set.

Comparison with Existing Techniques 213

p(Ω) λ2 (mean) λ3 (standard deviation)

Ω1 0.17 (216.07, 133.46, 194.10, 109.89, (11.75, 11.02, 7.67, 5.32,
160.68, 219.81, 131.19, 150.50, 11.65, 7.13, 9.07, 4.72,
25.29, 63.46, 20.42, 200.64, 5.93, 8.88, 6.14, 9.44,
36.27, 137.75, 96.61, 75.29) 7.78, 10.60, 5.29, 6.62)

Ω2 0.28 (83.19, 75.75, 87.97, 201.25, (11.63, 7.83, 8.96, 7.43,
74.04, 215.78, 137.47, 158.77, 11.22, 9.41, 11.46, 6.08,
144.32, 154.72, 227.32, 147.17, 11.36, 10.03, 8.74, 8.97,
218.30, 239.76, 112.88, 16.75) 7.69, 10.79, 8.26, 7.39)

Ω3 0.15 (226.15, 229.58, 152.28, 117.61, (6.56, 4.88, 6.43, 8.03,
228.48, 44.93, 53.33, 167.07, 5.23, 8.91, 11.96, 5.18,
169.34, 105.21, 195.62, 65.22, 6.72, 7.14, 5.07, 8.90,
135.68, 89.93, 82.97, 31.45) 7.21, 11.43, 5.65, 10.30)

Ω4 0.39 (107.33, 215.22, 120.36, 54.61, (6.49, 10.11, 7.31, 4.12,
75.11, 65.08, 170.02, 59.42, 8.06, 11.55, 9.67, 7.37,
116.14, 53.85, 99.59, 116.98, 8.05, 9.85, 7.31, 4.02,
55.13, 75.01, 103.14, 217.72) 9.21, 10.84, 7.37, 9.46)

Table 7.9: Details of 16 dimensional, 4 class, 64000 sample data set.

7.1 Comparison with respect to speed :

All of the timings in the following graphs are the total amount of CPU

time taken for the whole of the execution of the programs – including reading

in the data, and writing out the results.

In these first comparisons, Forgy’s method and MacQueen’s k-means

were both given the correct number of clusters to look for, the proposed method

was left to find as many as it liked.

Figure 7.1 shows the variation in CPU time taken to locate the clusters

in data sets which all contain the same number of clusters (k = 4), and which

all occupy the same number of dimensions (N = 4), but which each contain

different numbers of data points (M = 16000,32000,64000,128000, & 256000).

It would seem that all of the techniques are linearly dependent on M ,

214 Chapter 7

with a zero offset (zero data points would take zero time). This is as would be

expected, since all the data points are processed independently of each other.

Forgy’s method and MacQueen’s k-means are both roughly twice as fast as

the proposed method.

Figure 7.2 shows the variation in CPU time taken to locate the clusters

in data sets which all contain the same number of data points (M = 64000),

and which all occupy the same number of dimensions (N = 4), but which each

contain different numbers of clusters (k = 1,2,4,8, & 16).

It would appear that the proposed method and MacQueen’s k-means

are both roughly linearly dependent on k – although the proposed method

would require quite large error bars. Forgy’s method, on the other hand, has

become somewhat erratic. This is likely to be the result of particular juxtapo-

sitionings of clusters creating conditions which require either an abnormally

large, or an abnormally small, number of iterations to be performed before

they can be seperated.

MacQueen’s k-means is between two and five times faster than the

proposed method, in these cases, and Forgy’s method is between two and

three times faster.

Figure 7.3 shows the variation in CPU time taken to locate the clusters

in data sets which all contain the same number of data points (M = 64000),

and which all contain the same number of clusters (k = 4), but which each

occupy different numbers of dimensions (N = 1,2,4,8, & 16).

Forgy’s method and MacQueen’s k-means both show a very linear de-

pendence on N . This is as would be expected since, for these algorithms, the

number of dimensions just determines the number of times particular loops are

executed. The proposed method, in contrast, shows a very high, non-linear,

Comparison with Existing Techniques 215

Figure 7.1: Variation in CPU time used with respect to data set size.

216 Chapter 7

Figure 7.2: Variation in CPU time used with respect to the number of classes.

Comparison with Existing Techniques 217

Figure 7.3: Variation in CPU time used with respect to the number of dimen-
sions.

218 Chapter 7

dependence on N . The last point (for 16 dimensions) has not been plotted

because the program had still not finished after more than 5400 seconds (an

hour and a half) of CPU time.

A possible explanation for this great sensitivity to the number of di-

mensions is that the number of candidate clusters which have to undergo the

first test in the peak linkage process is going to be of the order of kN . This is

because the number of peaks found in each of the one dimensional histograms

(ns) is going to be of order k, and every possible combination of peaks (nN

s
of

them) have to be tested. However, if this was all that was involved, the pro-

posed method should also show a strong, non-linear, dependence on k. This

is not apparent on figure 7.2, unless the fifth point (k = 16) is spuriously low,

for some reason.

Given the proposed method’s high dependence on N , it is only possible

to say that both Forgy’s method and MacQueen’s k-means are both, for the

most part, faster.

The conclusion so far, then, is that MacQueen’s k-means is the fastest

of the three methods under consideration, and the proposed method is the

slowest.

However, what about situations where it is impractical, or undesirable,

to have to supply the cluster analysis algorithm with the number of clusters to

look for ? Unless it is possible to provide an automated method for estimating

k, Forgy’s method and MacQueen’s k-means will need to be applied to the

data for all values of k′ from k′ = 1 upwards. At each iteration the quality

of the results would need to be measured, and this value should be higher for

k′ = k than it is for k′ = k − 1 or k′ = k + 1. Thus, a total of k + 1 iterations

will be required to find k and do the cluster analysis.

To simulate this situation an extra loop was added to the programs

Comparison with Existing Techniques 219

implementing Forgy’s method and MacQueen’s k-means, so that the cluster

location part was executed (with the appropriate value of k) the required

number of times. No attempt, however, was made to actually provide a test

of the quality of the analysis.

Figure 7.4 shows the new variation in CPU time taken to locate the

clusters, with respect to data set size.

MacQueen’s k-means retains a linear dependence onM . Forgy’s method,

on the other hand, now shows a non-linear dependence. This is because, when

the wrong value of k is supplied, there is no way of knowing how many it-

erations (within Forgy’s method) will be required for what is a nonsensical

description of the data to result in a minimum in the mean squared error of

classification.

The proposed method is now faster than Forgy’s method, for M ≥

25000 or so, but MacQueen’s k-means is still about one and a half times faster

than the proposed method.

Figure 7.5 shows the new variation in CPU time taken to locate the

clusters, with respect to the number of clusters in the data set.

With the iteration from k′ = 1 to k′ = k + 1 we would expect both

Forgy’s method and MacQueen’s k-means to exhibit a non-linear dependence

on k, and this is indeed the case. The severity of the effect on Forgy’s method

would, perhaps, be surprising if we had not already seen the high non-linearity

of the previous graph.

The proposed method is faster than Forgy’s method, for k ≥ 3 or so,

and, this time, MacQueen’s k-means is only faster than the proposed method

for k ≤ 14, or thereabouts.

Figure 7.6 shows the new variation in CPU time taken to locate the

220 Chapter 7

clusters, with respect to the number of dimensions which the data set occupies.

Forgy’s method amd MacQueen’s both retain their very linear depen-

dence on N . This might not have been the case for Forgy’s method if the two

fixed values (M = 64000 & k = 4) had not been within the range where it is

still behaving fairly linearly in figures 7.4 & 7.5.

We now have a series of changes in the ordering of the algorithms as

regards speed. In the one dimensional case the proposed method is the fastest,

followed by MacQueen’s k-means. Between two dimensions and about five di-

mensions MacQueen’s k-means is the fastest, followed by the proposed method.

Finally, above about five dimensions MacQueen’s k-means is still the fastest,

but now Forgy’s method is in second place.

What conclusions can we draw, then, about the situation in which the

proposed method is designed to work ?

Well, provided that there are less than about fourteen clusters in the

data, the fastest method will always be MacQueen’s k-means. Second and

third place are determined as follows : for less than about three clusters, more

than about 25000 data points, or a data set that occupies more than about

five dimensions, Forgy’s method is second best; in all other cases the proposed

method is.

If there are more than about fourteen clusters in the data, then the

proposed method will be the fastest, provided that the data set occupies less

than about five dimensions. Second place would go to MacQueen’s k-means,

with Forgy’s method third.

How does all this fit in with the sort of values that we would expect for

real data sets, derived from multi-spectral imagery ?

A television quality image will comprise of three spectral bands

Comparison with Existing Techniques 221

Figure 7.4: Variation in CPU time used with respect to data set size, for
multiple iterations of Forgy’s method & MacQueen’s k-means.

222 Chapter 7

Figure 7.5: Variation in CPU time used with respect to the number of classes,
for multiple iterations of Forgy’s method & MacQueen’s k-means.

Comparison with Existing Techniques 223

Figure 7.6: Variation in CPU time used with respect to the number of dimen-
sions, for multiple iterations of Forgy’s method & MacQueen’s k-means.

224 Chapter 7

(N = 3), 512 by 512 pixels (M = 262144), and might contain anywhere

between about six and sixteen classes (6 ≤ k ≤ 16). Figures 7.2 and 7.5 give

us timings forN = 4, k = 8, andM = 64000, forM = 262144 we would expect

all of the various methods to take at least four times longer than this. So, for

a television image we can expect cluster location times of roughly 2 minutes

for MacQueen’s k-means, 3 minutes for Forgy’s method, and 10 minutes for

the proposed method – if k is known in advance. If k is unknown, then we can

expect times of roughly 6 minutes for MacQueen’s k-means, 10 minutes (still)

for the proposed method, and 11 minutes for Forgy’s method.

Taking k to the other end of the range (k = 16) and using figures

7.2 and 7.5 to determine appropriate factors for the change from k = 8, for

each method, we get times of roughly 3 minutes for MacQueen’s k-means, 9

minutes for Forgy’s method, and 13 minutes for the proposed method – if k

is known in advance. If k is unknown, then these become roughly 8 minutes

for MacQueen’s k-means, 13 minutes (still) for the proposed method, and 33

minutes for Forgy’s method.

A full LANDSAT scene comprises seven spectral bands (N = 7), 7000

by 6000 pixels (M = 4.2 × 107), and might be expected, again, to contain

anywhere between about six and sixteen classes (6 ≤ k ≤ 16). Figures 7.3 and

7.6 give us timings for N = 8, k = 4, and M = 64000, for M = 4.2 × 107 we

would expect all of the various methods to take at least 660 times longer than

this. Using k = 8, again, as an example of the lower bound of values for k we

can get factors for the change from k = 4 from figures 7.2 and 7.5, for each

method. This all results in cluster location times, for a full LANDSAT scene,

of roughly 12 hours for MacQueen’s k-means, 15 hours for Forgy’s method,

and 66 hours for the proposed method – if k is known in advance. If k is not

known, then these times become roughly 36 hours for MacQueen’s k-means, 39

Comparison with Existing Techniques 225

hours for Forgy’s method, and 66 hours (still) for the proposed method. If we

go, as before, to k = 16, then we get times of roughly 15 hours for MacQueen’s

k-means, 48 hours for Forgy’s method, and 83 hours for the proposed method

– if k is known – and roughly 83 hours for both MacQueen’s k-means and the

proposed method, and 359 hours (nearly 15 days) for Forgy’s method – if k is

unknown.

7.2 Comparison with respect to quality :

Tables 7.10 to 7.22 show where the clusters were located, by each of the

methods, in each of the data sets used for the speed comparisons. Ideally one

would want to quantify the quality of the results by measuring the average

error in the location of the positions of the clusters. This would require each

cluster centre found by each method to be identified with a real cluster cen-

tre. Unfortunately, this is not possible – partly because the proposed method

consistently over estimates the number of clusters in the data sets, and partly

because when MacQueen’s k-means goes wrong it goes so badly wrong that it

is not possible to identify which clusters it thinks that it has found.

One way in which we can get a quantitative analysis of the quality of

the cluster location is to define a permissible margin of error, and then see how

many of the clusters locations determined by the various methods lie within

this distance of a real cluster centre. If an algorithm finds the same cluster

several times then only the first occasion counts as a ‘hit’, all the rest are

‘misses’. The proposed method will automatically score four misses for the

case where the program failed to terminate in a reasonable length of time.

Tables 7.23 and 7.24 show the number of hits and misses, respectively,

for each method under consideration, and for a range of permissible margins

of error. For ease of calculation the margins of error apply to the values of

226 Chapter 7

Forgy MacQueen Naylor

104

109.42 109.42 110

208.70 204.57

215.78 215

221.68

234.82 231.26 232

241

Table 7.10: Cluster centres found in 1 dimensional, 4 class, 64000 sample data
set.

Forgy MacQueen Naylor

(35.79, 67.07) (36, 70)

(35.75, 73.35)

(80.48, 60.40)

(118.46, 52.54) (118, 52)

(212.00, 126.76)

(216.56, 139.07)

(218.19, 131.38) (222.42, 129.27) (219, 131)

Table 7.11: Cluster centres found in 2 dimensional, 4 class, 64000 sample data
set.

Forgy MacQueen Naylor

(215.59, 132.92, 193.61, 109.38) (215.59, 132.92, 193.61, 109.38) (216, 132, 194, 109)

Table 7.12: Cluster centres found in 4 dimensional, 1 class, 64000 sample data
set.

Comparison with Existing Techniques 227

Forgy MacQueen Naylor

(215.54, 133.08, 193.61, 109.41) (215.54, 133.08, 193.61, 109.41) (213, 133, 194, 109)

(229.57, 103.22, 157.50, 35.78) (229.57, 103.22, 157.50, 35.78) (229, 103, 158, 36)

Table 7.13: Cluster centres found in 4 dimensional, 2 class, 64000 sample data
set.

Forgy MacQueen Naylor

(63.13, 20.06, 200.14, 35.79) (63.13, 20.06, 200.14, 35.79) (63, 20, 198, 36)

(200.34, 51.86, 89.09, 82.61) (200, 52, 90, 82)

(208.40, 131.17, 193.97, 109.36)

(215.70, 78.76, 124.92, 58.10)

(215.37, 133.08, 193.61, 109.33) (220.78, 134.57, 193.33, 109.31) (223, 134, 195, 109)

(229.68, 103.24, 157.52, 35.79) (227, 103, 157, 36)

Table 7.14: Cluster centres found in 4 dimensional, 4 class, 16000 sample data
set.

Forgy MacQueen Naylor

(62.86, 19.98, 200.10, 35.80) (62.86, 19.98, 200.10, 35.80) (64, 20, 198, 36)

(200.28, 51.72, 88.94, 82.77) (200, 52, 89, 82)

(201, 52, 89, 105)

(208.43, 131.38, 193.87, 109.34)

(215.36, 133.11, 193.63, 109.37) (220.85, 134.48, 193.45, 109.40) (214, 134, 195, 109)

(215.71, 78.72, 124.81, 58.20)

(229.75, 103.30, 157.47, 35.84) (229, 103, 158, 36)

Table 7.15: Cluster centres found in 4 dimensional, 4 class, 32000 sample data
set.

228 Chapter 7

Forgy MacQueen Naylor

(62.92, 20.00, 200.08, 35.78) (62.92, 20.00, 200.08, 35.78) (63, 20, 198, 36)

(200.27, 51.73, 88.94, 82.70) (201, 52, 89, 83)

(201, 52, 89, 105)

(215.56, 133.10, 193.64, 109.39) (211.62, 127.86, 193.77, 109.40) (214, 133, 195, 109)

(215.63, 78.68, 124.82, 58.14)

(219.09, 137.79, 193.53, 109.37)

(229.62, 103.22, 157.50, 35.78) (229, 103, 158, 36)

Table 7.16: Cluster centres found in 4 dimensional, 4 class, 64000 sample data
set.

Forgy MacQueen Naylor

(62.96, 19.88, 200.15, 35.72) (62.96, 19.88, 200.15, 35.72) (63, 20, 198, 36)

(200.31, 51.74, 88.91, 82.64) (200, 52, 89, 83)

(200, 52, 89, 105)

(215.62, 78.68, 124.81, 58.12)

(215.54, 133.12, 193.61, 109.40) (209.29, 130.78, 193.60, 109.46) (214, 133, 195, 109)

(221.16, 135.23, 193.62, 109.34)

(214, 107, 194, 109)

(229.57, 103.21, 157.51, 35.78) (229, 103, 158, 36)

Table 7.17: Cluster centres found in 4 dimensional, 4 class, 128000 sample
data set.

Forgy MacQueen Naylor

(62.96, 19.92, 200.18, 35.77) (62.96, 19.92, 200.18, 35.77) (63, 20, 198, 36)

(200.30, 51.73, 88.97, 82.71) (201, 52, 89, 82)

(201, 52, 89, 105)

(215.66, 78.67, 124.82, 58.14)

(215.56, 133.00, 193.62, 109.38) (209.38, 130.72, 193.60, 109.41) (214, 133, 195, 109)

(221.25, 135.11, 193.63, 109.36)

(214, 107, 195, 109)

(229.64, 103.20, 157.46, 35.77) (229, 103, 157, 36)

Table 7.18: Cluster centres found in 4 dimensional, 4 class, 256000 sample
data set.

Comparison with Existing Techniques 229

Forgy MacQueen Naylor

(16.27, 23.61, 86.96, 40.20) (17, 22, 89, 38)

(23.64, 217.48, 126.35, 85.03)

(35.83, 22.03, 134.32, 38.33)

(63.06, 19.85, 200.23, 35.73) (63, 20, 198, 36)

(112.58, 161.30, 190.85, 68.30)

(123, 157, 112, 219)

(136.30, 158.44, 136.98, 154.87) (134, 158, 140, 153)

(137.50, 158.30, 149.16, 153.77)

(138.58, 155.92, 125.78, 190.43)

(139.44, 154.62, 116.24, 209.69)

(147, 157, 115, 206)

(147, 157, 136, 206)

(200.33, 51.67, 88.99, 82.70) (200.33, 51.67, 88.99, 82.70) (200, 51, 89, 84)

(215.67, 132.82, 193.56, 109.44) (215.67, 132.82, 193.56, 109.44) (213, 133, 195, 109)

(229.71, 103.32, 157.49, 35.83) (225.43, 103.14, 160.00, 35.85) (229, 103, 157, 36)

(235.29, 103.56, 154.22, 35.81)

Table 7.19: Cluster centres found in 4 dimensional, 8 class, 64000 sample data
set.

230 Chapter 7

Forgy MacQueen Naylor

(16.33, 23.61, 87.04, 40.26) (16.33, 23.61, 87.04, 40.26) (14, 21, 85, 38)

(24.91, 235.41, 221.18, 175.51) (24.91, 235.41, 221.18, 175.51) (25, 235, 221, 175)

(50.84, 94.96, 109.65, 49.61) (50.84, 94.96, 109.65, 49.61) (51, 93, 103, 46)

(53, 97, 116, 54)

(59.41, 20.11, 194.23, 34.09)

(62.91, 20.04, 200.21, 35.78) (61.89, 20.50, 207.57, 33.28) (65, 20, 197, 36)

(61.09, 17.85, 202.15, 41.51)

(69.58, 21.22, 198.96, 35.72)

(74.07, 243.98, 90.62, 60.50)

(106.82, 214.82, 120.01, 54.11) (107, 217, 119, 54)

(114.82, 219.16, 139.33, 73.99)

(117.11, 227.91, 44.40, 52.88) (117.11, 227.91, 44.40, 52.88) (117, 230, 44, 54)

(122.63, 152.24, 111.51, 222.57) (120, 157, 114, 219)

(123.74, 157.35, 111.60, 211.31)

(129.15, 226.94, 173.93, 109.60) (130, 232, 172, 110)

(135.21, 89.29, 82.53, 30.92) (134.86, 89.51, 82.55, 30.77) (133, 93, 83, 34)

(136.87, 158.35, 143.74, 154.30) (136.87, 158.36, 143.74, 154.30) (133, 158, 139, 154)

(139.48, 154.63, 116.01, 209.77)

(148.74, 154.62, 118.54, 205.51) (149, 157, 117, 206)

(163.07, 72.37, 84.69, 45.29)

(200.34, 51.77, 89.25, 82.78) (200.41, 51.73, 89.25, 83.10) (202, 52, 87, 84)

(205, 130, 168, 32)

(206, 98, 169, 33)

(215.34, 132.86, 193.53, 109.41) (215.34, 132.86, 193.53, 109.41) (223, 134, 194, 110)

(220.59, 105.95, 161.84, 33.80) (220.59, 105.95, 161.84, 33.80) (227,99,155, 36)

Table 7.20: Cluster centres found in 4 dimensional, 16 class, 64000 sample
data set.

Comparison with Existing Techniques 231

Forgy MacQueen Naylor

(70, 152, 76, 168,

121, 200, 52, 90)

(130.87, 206.17, 126.89, 204.04, (130.87, 206.17, 126.89, 204.04,

206.28, 136.67, 26.07, 41.63) 206.28, 136.67, 26.07, 41.63)

(154, 227, 148, 218,

221, 113, 16, 23)

(154, 227, 148, 218,

240, 113, 16, 23)

(215.64, 133.08, 193.68, 109.38, (212.32, 135.42, 193.59, 109.40, (214, 136, 194, 110,

160.14, 219.33, 130.72, 149.98) 156.35, 219.41, 130.76, 149.95) 159, 219, 130, 150)

(220.04, 129.98, 193.80, 109.35,

165.15, 219.21, 130.66, 150.03)

(219.38, 58.90, 190.14, 208.32,

23.64, 217.48, 126.35, 85.03)

(229.11, 122.76, 154.43, 111.45, (229.11, 122.76, 154.43, 111.45, (229, 123, 150, 111,

217.49, 167.08, 224.47, 73.72) 217.49, 167.08, 224.47, 73.72) 218, 167, 224, 74)

(229, 124, 161, 110,

218, 167, 224, 87)

(229, 123, 151, 111,

237, 167, 224, 73)

Table 7.21: Cluster centres found in 8 dimensional, 4 class, 64000 sample data
set.

232 Chapter 7

Forgy MacQueen Naylor

(74.89, 109.42, 108.53, 145.95,

150.63, 204.06, 250.14, 217.97,

34.77, 73.58, 168.70, 126.05,

220.36, 59.75, 9.10, 52.65)

(82.57, 75.16, 87.47, 200.74,

73.53, 215.24, 137.01, 158.21,

143.79, 154.16, 226.81, 146.61,

217.77, 238.84, 112.30, 16.30)

(106.80, 214.71, 119.87, 54.10,

74.59, 64.64, 169.53, 58.93,

115.68, 53.33, 99.06, 116.49,

54.54, 74.52, 102.64, 217.24)

(133.25, 129.64, 110.24, 171.15,

128.22, 154.79, 107.21, 161.21,

152.64, 136.65, 215.57, 117.58,

188.55, 185.93, 101.75, 21.46)

(140.27, 218.76, 128.86, 71.84,

117.76, 58.96, 136.69, 89.25,

130.62, 67.78, 126.08, 101.89,

77.24, 78.70, 96.96, 164.80)

(215.58, 133.10, 193.61, 109.40, (211.46, 133.46, 193.69, 109.48,

160.12, 219.35, 130.71, 150.03, 163.70, 219.19, 130.38, 150.07,

24.82, 62.96, 19.90, 200.01, 24.86, 63.11, 19.98, 199.84,

35.79, 137.29, 96.12, 74.81) 35.63, 137.11, 96.11, 74.87)

(221.16, 132.60, 193.49, 109.31,

155.28, 219.56, 131.15, 149.97,

24.77, 62.77, 19.79, 200.24,

36.00, 137.54, 96.14, 74.73)

Table 7.22: Cluster centres found in 16 dimensional, 4 class, 64000 sample
data set.

Comparison with Existing Techniques 233

each coordinate, rather than the Euclidean distance between the locations

– that is they define (hyper-)cubes around the cluster locations, rather than

(hyper-)spheres. The results are expressed as a percentage of the total number

of clusters in the data sets. The results for the proposed method add up to

more than 100% because of its over estimation of the number of clusters.

Margin of error +/− 1 +/− 2 +/− 4 +/− 8
Forgy’s method 73% 73% 81% 84%
MacQueen’s k-means 33% 36% 43% 57%
Naylor’s method 32% 63% 82% 90%

Table 7.23: Hits scored by the various methods, at different permissible mar-
gins of error.

Margin of error +/− 1 +/− 2 +/− 4 +/− 8
Forgy’s method 27% 27% 19% 16%
MacQueen’s k-means 67% 64% 57% 43%
Naylor’s method 86% 55% 36% 28%

Table 7.24: Misses scored by the various methods, at different permissible
margins of error.

None of the methods gives particularly impressive results, even at the

most generous margin of error.

MacQueen’s k-means gives consistently poor results, this is because,

in its single pass through the data, it has no opportunity to correct for poor

initial estimates of the cluster locations. It may well be the fastest of the

three methods, but the quality of its results is so poor as to make it virtually

unusable.

The way in which the quality of the results for Forgy’s method slowly

increases, as the permissible error increases, indicates that whilst the majority

(73%) of its cluster locations are ‘spot on’, the ones which it does get wrong

234 Chapter 7

(presumably also because of poor initial estimates) are so far wrong as to be

useless. This, combined with the erraticness of its execution time, goes to make

Forgy’s method so unpredictable as to make its results just as untrustworthy

as those of MacQueen’s k-means.

The proposed method is just as bad as MacQueen’s k-means at scoring

‘direct hits’, however, as the permissible error increases, its score continually

rises towards a respectable level. This tends to suggest that, whilst it may be

producing rather sloppy results, it is not getting things as wrong as Forgy’s

method or MacQueen’s k-means do. The addition of some sort of ‘fine tuning’

stage, at the end of the algorithm, might result in a useful (∼ 95%) score,

even at a low permissible error. The numebr of misses remains high, for all

margins of error, because of the continual over estimation of the number of

classes. This needs to be dealt with too, before the method can be considered

truly useful. The results for the one dimensional feature space are particularly

poor. This is because there is no peak linkage stage to weed out false peaks.

The algorithm should probably carry a warning that it should only be used in

two, or more, dimensions.

Finally, a more visual representation of the quality of the results pro-

duced by the various methods is provided in figures 7.7 to 7.13. These seg-

mentations were performed using the versions of the programs used for the

first set of speed tests. The data set is the BBC testcard image, after having

all of the lighting effects removed (see figure 4.4).

Figure 7.7 shows the result of segmenting the image using the proposed

method. Six classes have been found, and, apart from a scattering of ‘flesh’

pixels having been classified as ‘yellow’, the result is quite acceptable.

Figures 7.8 to 7.10 show the result of segmenting the image using

Forgy’s method, with k specified as 5, 6, & 7 respectively. The ‘yellow’ cluster

Comparison with Existing Techniques 235

(the table cloth) has not been found as a distinct entity in any of the seg-

mentations. This is the smallest cluster in the data set, but it is large enough

that one would expect it to be found. Also, for k = 5 & 6, only four classes

have resulted in the segmentation, and, for k = 7, there are only five classes.

This means that Forgy’s method is getting some of the cluster locations so far

wrong that they do not actually relate to any of the data points.

Figures 7.11 to 7.13 show the result of segmenting the image using

MacQueen’s k-means, again with k specified as 5, 6, & 7. Again, the ‘yellow’

cluster is never found as a distinct entity. Also, k clusters seem to be obtained

by just splitting the ‘colourless’ class (the blackboard and borders) over more

and more classes.

This really all just goes to reinforce what we have already seen about

how well the various methods actually cope with locating clusters.

236 Chapter 7

Comparison with Existing Techniques 237

Figure 7.7: Result of segmenting the BBC testcard using Naylor’s method (6
classes found).

Figure 7.8: Result of segmenting the BBC testcard using Forgy’s method
(k = 5).

238 Chapter 7

Comparison with Existing Techniques 239

Figure 7.9: Result of segmenting the BBC testcard using Forgy’s method
(k = 6).

Figure 7.10: Result of segmenting the BBC testcard using Forgy’s method
(k = 7).

240 Chapter 7

Comparison with Existing Techniques 241

Figure 7.11: Result of segmenting the BBC testcard using MacQueen’s k-
means (k = 5).

Figure 7.12: Result of segmenting the BBC testcard using MacQueen’s k-
means (k = 6).

242 Chapter 7

Comparison with Existing Techniques 243

Figure 7.13: Result of segmenting the BBC testcard using MacQueen’s k-
means (k = 7).

244 Chapter 7

245

CHAPTER 8

Conclusions and Future Work

The results obtained using this new method of cluster location, partic-

ularly those presented in the preceeding chapter, seem to indicate that, whilst

the underlying principle is sound, the ways in which various parts of the algo-

rithm have actually been implemented leave room for improvement. The weak

points can be summarised as follows :

• the location of peaks in one dimension could do with being able to cope

better with merged peaks – no amount of modification of the later stages

of the algorithm can correct for information which is substantially wrong

to start with.

• the peak linkage stage needs to be done in a manner which has a time

dependence somewhat less than k
N – this is necessary if the method is to

be used in the high dimensional feature spaces for which it was intended.

• the peak linkage stage, again, needs to be improved so that no false peaks

at all survive – otherwise it would be premature to claim that the cluster

validation problem had been solved.

• the accuracy of the final peak locations needs to be greatly improved,

by some sort of fine tuning – otherwise the results will be no good for

anything other than very rough segmentations.

The first of these problems could be greatly reduced by using a fuller

implementation of the CLEAN algorithm. Removing only small portions of

246 Chapter 8

the peaks on each iteration, and allowing for negative peaks – caused by ac-

cumulated errors – should result in a much more accurate picture of the peak

locations being obtained. However, fragmenting the peaks will make it difficult

to accurately recover details of their widths and heights. This would mean that

the results were no longer suitable for use with cooccurrence segmentation.

A possible solution to the second problem would be to do the peak

linkage one dimension at a time. That is, the peaks found in two one dimen-

sional histograms could be analysed to see how they correspond to peaks in

two dimensions. The surviving, two dimensional, candidates could then be

linked with the peaks from a third histogram to produce a set of three di-

mensional candidates, and so on. Since the number of surviving candidates at

each stage, and the number of peaks found in each histogram, will be of order

k, this should result in an execution time which is dependent on Nk
2, rather

than k
N . For large values of N and K this would imply a very considerable

speed up.

The third problem is probably the most difficult one associated with

the use of this algorithm. In theory there are plenty of solutions, as detailed in

chapter 3, but, in practice, the solutions are unusable either because they are

too slow when employed in a high dimensional feature space (particularly one

which cannot be stored in the computer’s memory), or because they are very

sensitive to any noise on the distributions being analysed. No obviously work-

able solution to this problem springs to mind, so finding one should probably

be considered the most urgent task for any future work.

The final problem has a very simple solution. This would be to use the

cluster locations determined by the new method, and the value for the num-

ber of clusters, as the starting point for a classification using Forgy’s method

(or something similar). This would make use of Forgy’s method’s ability to

Conclusions and Future Work 247

produce accurate values for the cluster centre locations, whilst removing the

problems of its needing to know how many clusters to look for, and of its occa-

sionally going awry when given poor initial estimates of the cluster locations.

The cooccurrence segmentation of multi-spectral imagery has produced

some interesting results, but, if the author was doing this work again, he would

probably omit it. The cluster location/image segmentation problem is hard

enough, as has been seen, without the added constraint of having to estimate

peak widths, and the added problems of having to do the classification in a

2N dimensional feature space, whilst also producing an edge strength map.

Admittedly, not using coocurrence information would result in slightly more

fragmented segmentations – compare figure 7.7, which does not use cooccur-

rence, with figure 4.25, which does – but there are post processing solutions

to this problem, for example ‘Besag smoothing’ [Besag, 1986]. The benefits

just do not seem to outweigh the difficulties. Anyway, it would appear, from

the results in chapter 4, that the removal of the lighting effects from a multi-

spectral image plays a far more important part in ensuring a good looking

segmentation.

Also, trying to produce an algorithm which would work in an arbitrarily

high number of dimensions was probably being rather overenthusiastic. It

would have been better to have kept the problem simple, at least to start with,

for example the segmentation of three band images television type images.

Results could still have been achieved for the remote sensing work, either by

selecting the three bands which contain information pertinent to the required

classification, or by using the first three principal components. This would

have had the added bonus of making the analysis of the remote sensing results

easier – since all the spectral information that was being used by the algorithm

248 Chapter 8

could have been visualised as a colour composite.

Over the lifetime of this project the execution time of the program

has decreased dramatically, largely due to the availability of increasingly high

performance computers. The very first version of the program would take

several days to segment a 512 pixel square, 7 band, image on a DEC VAX

11/780. A subsequent version would run in a day on a DEC VAX 8500, and the

final version runs in a couple of hours on a Sun SPARCstation II. All of these

machines have sequential architectures, the structure of the algorithm, though,

is inherently parallel. The production and analysis of the one dimensional

histograms could all be performed on a multiple instruction/multiple data

(MIMD) architecture machine, e.g. something based on transputers, with

one processor per histogram. Similarly all the pixel manipulation processes

– smoothing the image, removing lighting effects, and labelling the pixels –

are ideal for implementation on a single instruction/multiple data (SIMD)

architecture, e.g. a distributed array processor (DAP), where you can have

one processor per pixel.

In fact, a small part of the labelling process was modified to make use

of a DAP attached to a Sun SPARCstation at BP. This resulted in an, overall,

fourfold increase in speed. This may not seem too impressive for something

containing 1024 processors, but only a very small amount of memory was

available on each processor. This meant that the data had to be read onto,

and from, the DAP in several pieces, and it is this, data transfer, process which

is the main limiting factor on such machines. A larger number of processors,

or a larger amount of memory on each processor, would hopefully have secure

a much more significant increase in speed.

Given the unlikelihood of a combined MIMD/SIMD computer being

Conclusions and Future Work 249

made available to the author, perhaps the most practical solution to speeding

up the program (from the hardware side of things) would be to rewrite it

to work across a collection of networked workstations. The smoothing and

lighting effect removal could be spread across all the available machines in a

network by giving each of them a part of the image to work on. Inevitably

one will finish before all the rest, and that machine would be given the job of

analysing the histogram of one of the bands (assuming that there is a band

which has finished being smoothed, etc.). As other machines complete their

tasks they too can start work on histogram analysis. Once all the histograms

have been assigned to machines all the rest will be left idle – unfortunately

there is nothing else which they can be getting on with at this stage. However,

the next stage will keep all the machines busy as the list of candidate cluster

centres is divided between them for the tests of local maximality. Once the

final set of, real, cluster centres has been determined the image would again

be split up across all of the machines for the classification stage.

Obviously the sort of speed increase which would be possible using this

method would depend on the number of workstations available. However, with

a couple of dozen it should be possible to get to the point where, for television

type images at least, the speed is limited by such things as synchronisation

problems, interprocessor communication times, and the time taken to read

the data in and write the results out, rather than by the actual time taken to

process the data. This is still unlikely to mean that the program will run in

‘real time’ (i.e. at video rates). For this one would really require, specially

designed, dedicated hardware.

In conclusion then, it is probably safe to claim a limited success for this

new technique. Fortunately, it is clear what needs doing to improve things,

even if it is not always obvious how that can actually be achieved. Given time,

250 Chapter 8

and the opportunity, the author would certainly like to pursue these hopeful

beginings through to a more positive outcome.

251

Appendix A
The FORTRAN source code for the image segmentation program.

The structure of the program is as follows :

 ●

 ●

●

■

 - "ERIC" routines.

 - "Numerical Recipes" routines.

COOCSEG

DATAIN

INTIN

YES

OPEN

NOLIGHT MATRIX_INV

LUDCMP

LUBKSB

 ●

●

FILTDEF INTIN

CONVOLVE

GLCOOC

DIAG

HSTANAL SIGMA

SORT

FINDPK

JACOBI

EIGSRT

SORT3

SORT4SEGMENT

SORT2

DATAOUT YES

DATAOUT YES

 ●

 ●

 ■

 ■

 ■

 ■

COOCSEG is the main program. DATAIN reads ‘raw’ (single byte per

pixel) data from a file. NOLIGHT removes the lighting effects from an im-

age. MATRIX INV inverts matrices. FILTDEF defines a smoothing (noise re-

duction) filter. CONVOLVE convolves the image with the filter. GLCOOC forms

and analyses cooccurrence matrices. DIAG constructs the leading diagonal of

252 Appendix A

the cooccurrence matrix of an image. HSTANAL analyses a one dimensional

sub-space, looking for peaks. SIGMA fits a Gaussian curve to a peak. The var-

ious SORT routines sort different numbers of arrays, in different ways. FINDPK

determines who the peaks found by HSTANAL link together to define cluster

centres. SEGMENT segments an image in cooccurrence space, and produces

an edge probability image. And, DATAOUT writes out various types of image

data to a file.

The “ERIC” routines are a set of functions, and subroutines, used at

King’s College to provide a robust user interface to programs. INTIN gets an

integer value from the user; OPEN opens a specified file; and YES gets a “yes”

or “no” answer to a question.

The “Numerical Recipes” routines are taken from “Numerical Recipes

- The Art of Scientific Computing” by W. H. Press, B. P. Flannery, S. A.

Teukolsky, & W. T. Vetterling, published by Cambridge University Press.

LUDCMP performs LU-decomposition on a matrix; LUBKSB does back substitu-

tion on the decomposed matrix; JACOBI finds the eigenvalues, and eigenvec-

tors, of a matrix; and EIGSRT sorts the eigenvectors according to the values

of the eigenvalues.

The program is nowhere near as modular as it could be. In particular,

FINDPK is rather rambling. This is due to the programs being still, very much,

a development version.

Apart from in one, or two, places, no effort has been made to optimise

the program with respect to speed. This is because the most important factor

in the writing of the first version was getting it to fit in the 6 Mb of available

memory. Even when computers with more memory became available, speed

optimisation was not really a consideration, since the new machines were

faster anyway.

The code has been extensively commented, in order to allow for easy

development (possibly by other people), and for easy translation into other

Program Source Code 253

languages (almost definitely by other people). It should be possible to un-

derstand what the program is doing without having to resort to ‘reading’ the

FORTRAN code.

254 Appendix A

COOCSEG :

c

c +--+

c | This software produced by Philip J. Naylor as part of his Ph.D. |

c | work at King’s College London, 1988-1992. This work was funded |

c | by the SERC and BP Research International. This software comes |

c | with no guarantees, and you use it at your own risk. The author |

c | will probably be prepared to help you out with any problems, if |

c | you can track him down. Philip J. Naylor, July 1992. |

c +--+

c

c --

c ##

c --

c

program coocseg

c

c **

c * *

c * a program to segment multi-spectral *

c * images, using cooccurrence matrices. *

c * [n.b. this program uses routines from "Numerical Recipes - *

c * the Art of Scientific Computing" by Press, Flannery, *

c * Teukolsky, and Vetterling, Cambridge University Press, *

c * also various "in house" robust I/O routines. *

c * *

c **

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c --

c integer variables :

c

c band - the spectral band number.

c count - loop counter.

c fsize - the cooccurrence distance to be used, i.e. length of

c half cooccurrence filter.

c felem - element number in half coocurrence filter.

c nband - the number of spectral bands.

c nclass - the number of classes found in the image.

c num - record number, used when reading a (direct access)

c byte data file.

c numlev - the number of grey levels to which image is

c digitized.

c offax - the off-’diagonal’ distance, in cooccurrence space,

c which defines the boundary between region pixels and

c edge pixels.

Program Source Code 255

c pos - indicates position in an array.

c positn - alternative indication of position in an array.

c xsize - the size of the image, in the x direction.

c ysize - the size of the image, in the y direction.

c

integer band,count,fsize,felem,nband,nclass,num,numlev

integer offax,pos,positn,xsize,ysize,bnd

c

c --

c integer arrays :

c

c classave - the nband dimensional vectors, giving the along-axis

c positions of the region cluster centres.

c classwid - the along-axis half-widths of the region clusters,

c in each of the nband dimensions.

c

integer classave(16,800),classwid(16,800)

c

c --

c byte arrays :

c

c images - the (xsize by ysize) by nband image data.

c segim - the xsize by ysize segmented image.

c

byte images(4194304),segim(262144)

c

c --

c real variables :

c

c area - the area under a particular section of the

c cooccurrence filter.

c disp - the displacement from the centre of the cooccurrence

c filter of a particular element of the half filter.

c dummy - dummy variable for passing to dataout.

c f - the value taken by a pariticuar element of the

c un-normalized half cooccurrence filter.

c rtemp - temporary storage for a real value.

c total - the total area under the un-normalized half

c cooccurrence filter.

c

real area,disp,dummy,f,total

c --

c real arrays :

c

c filter - the, normalized, smoothing filter.

c

real filter(2500)

256 Appendix A

c

c --

c character variables :

c

c screen - this variable holds an escape sequence which is used

c to clear the screen, and send the cursor ’home’.

c

character screen*7

c

c --

c ==

c >>>>>>>>>>>> function declarations <<<<<<<<<<<<

c --

c integer functions :

c

c intin - ’eric’ library routine, used to input an integer, in

c response to a given prompt.

c

integer intin

c

c --

c ==

c ##

c --

c

c

c the start of the program proper :

c

c --

c ==

c --

c define a string, which, when sent to the terminal, will clear the

c screen, and send the cursor ’home’ :

c

screen=char(27)//’[2j’//char(27)//’[h’

c

c --

c announce the program :

c

write(*,*) screen

write(*,’(11x,a58///)’) ’Cooccurrence segmentation program, versio

&n 3.4 (PJN 1989)’

c

c --

c read in the data (the data are stored internally as signed bytes, i.e.

c values in the range -128 to 128) :

c

Program Source Code 257

call datain(images,xsize,ysize,nband)

numlev=256

c

c --

c set up a log file :

call open(’Log file >’,’coocseg’,’log’,9,’fn’)

c

c --

c if there is more than one spectral band, remove the lighting effects,

c by dividing each band by the sum of all the bands :

c

if (nband .gt. 1) then

call nolight(images,xsize,ysize,nband,numlev)

end if

c

c --

c find out what type and size of filter should be used :

c

call filtdef(filter,fsize)

if (fsize .gt. 1) call convolve(images,xsize,ysize,nband,

& filter,fsize)

c

c --

c call the subroutine which produces, and analyses, the cooccurrence

c matrices :

c

call glcooc(images,xsize,ysize,nband,numlev,classave,

& classwid,nclass,(fsize/2)+1)

c

c --

c call the subroutine which ’maps’ the image through the ’labelled’

c cooccurrence matrix, in order to segment it :

c

call segment(images,xsize,ysize,nband,classave,

& classwid,nclass,segim,(fsize/2)+1)

c

c --

c call the subroutine which ’relaxes’ the segmentation labelling :

c

c ** not implemented as yet **

c

c write(*,*) screen

c call relax(segim,xsize,ysize,nclass)

c

c --

c output the segmented image (in readar format) :

c

258 Appendix A

call dataout(’File for segmented image’,segim,dummy,xsize,ysize,

& 1,1)

c

c --

c ==

c --

c the end of the main program :

c

close(9,status=’keep’)

write(*,*) screen

c

c --

c ##

c ==

c --

c

end

c

c --

c ##

c --

c

Program Source Code 259

DATAIN :

c

c +--+

c | This software produced by Philip J. Naylor as part of his Ph.D. |

c | work at King’s College London, 1988-1992. This work was funded |

c | by the SERC and BP Research International. This software comes |

c | with no guarantees, and you use it at your own risk. The author |

c | will probably be prepared to help you out with any problems, if |

c | you can track him down. Philip J. Naylor, July 1992. |

c +--+

c

c --

c ##

c --

c

subroutine datain(images,xsize,ysize,nband)

c

c **

c * *

c * a subroutine to read image data from a raw byte file. *

c * *

c **

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c --

c integer variables :

c

c band - the spectral band number.

c nband - the number of spectral bands.

c num - the record number in the file.

c positn - the position within the image.

c xsize - the size of the image (x).

c ysize - the size of the image (y).

c

integer band,nband,num

integer pos,positn,xsize,ysize

c

c --

c byte arrays :

c

c images - the image data.

c

byte images(4194304)

c

c --

c logical variables :

260 Appendix A

c

c again - true if a file read or open is to be reattempted after

c an error.

c square - true if the image is square.

c

logical again,square

c

c --

c character variables :

c

c filename - the name of the file containing a band of the image.

c

character filename*80

c

c --

c ==

c >>>>>>>>>>>> function declarations <<<<<<<<<<<<

c --

c integer functions :

c

c intin - ’eric’ library routine, used to input an integer, in

c response to a given prompt.

c

integer intin

c

c --

c logical functions :

c

c yes - ’eric’ library routine, used to get a yes or no

c answer to a given question.

c

logical yes

c

c --

c ==

c ##

c --

c

c the start of the subroutine proper :

c

c --

c ==

c --

c get details of the data :

c

square=yes(’Is the image square ? >’,.true.)

if (square) then

Program Source Code 261

xsize=intin(’Image size >’,512,64,512)

ysize=xsize

else

xsize=intin(’Image size in x-direction >’,512,64,1024)

ysize=intin(’Image size in y-direction >’,xsize,64,

& 262144/xsize)

end if

nband=intin(’Number of spectral bands >’,3,1,32)

c

c --

c loop over the spectral bands :

c

do 1,band=1,nband,1

c

c --

c get the name of the file (assumes there will not be more than 26

c bands) :

c

1000 write(*,666) ’Image file ’//char(64+band)//’ >’

read(*,’(a)’) filename

666 format(1x,a,’ : ’,$)

c

c --

c open the file :

c

open (unit=1,file=filename,access=’direct’,status=’old’,

& organization=’sequential’,recl=128,err=2)

c

c --

c read in the data (the data are stored internally as signed bytes,

c i.e. -128 to 127, but stored in the files as signed bytes,

c i.e. 0 to 256) :

c

do 3,num=1,(xsize*ysize)/512,1

read(1,rec=num,err=4) (images(((band-1)*(xsize*ysize))

& +positn),positn=((num-1)*512)+1,num*512)

3 continue

c

c --

c take account of 2’s complementation :

c

do 6,positn=((band-1)*xsize*ysize)+1,(band*xsize*ysize),1

if (images(positn) .lt. 0) then

images(positn)=images(positn)+128

else

images(positn)=images(positn)-128

end if

262 Appendix A

6 continue

c

c --

c close the file

c

close(1)

c

c --

c go on to the next spectral band :

c

1 continue

c

c --

c skip to the end :

c

goto 3000

c

c --

c ##

c ==

c --

c code for ’dealing’ with problems which occur whilst handling byte data

c files :

c

2 write(*,*) ’Unable to open file ’,filename

again=yes(’Try again ? >’,.true.)

if (again) goto 1000

stop

4 write(*,*) ’Error in reading from file ’,filename

again=yes(’Try again ? >’,.false.)

close(1)

if (again) goto 1000

stop

c

c --

c ==

c --

c

3000 end

c

c --

c ##

c --

c

Program Source Code 263

NOLIGHT :

c

c +--+

c | This software produced by Philip J. Naylor as part of his Ph.D. |

c | work at King’s College London, 1988-1992. This work was funded |

c | by the SERC and BP Research International. This software comes |

c | with no guarantees, and you use it at your own risk. The author |

c | will probably be prepared to help you out with any problems, if |

c | you can track him down. Philip J. Naylor, July 1992. |

c +--+

c

c --

c ##

c --

c

subroutine nolight(images,xsize,ysize,nband,numlev)

c

c **

c * *

c * a subroutine to remove the lighting effects from a *

c * multi-spectral image, by removing the overall intensity *

c * variations. *

c * *

c **

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c --

c integer variables :

c

c band - spectral band number.

c bnd - spectral band number.

c bnd2 - spectral band number.

c itemp - integer pixel value.

c nband - number of spectral bands.

c numlev - number of geylevels per band.

c xsize - image size in x direction.

c ysize - image size in y direction.

c

integer band,nband,numlev

integer bnd2,xsize,ysize,bnd,itemp

c

c --

c byte arrays :

c

c images - the image data.

c

264 Appendix A

byte images(xsize,ysize,nband)

c

c --

c real variables :

c

c i - real pixel value.

c tot - normalisation parameter.

c

real tot,i

c

c --

c real arrays :

c

c trans - the forward transformation matrix.

c itrans - the reverse transformation matrix.

c dtrans - the combined forward and reverse transformation matrix,

c including setting intensity component to zero in

c between).

c inten - the colour of a pixel (i.e. its spectral values).

c

real trans(16,16),itrans(16,16),dtrans(16,16),inten(16)

c

c --

c ==

c ##

c --

c

c the start of the subroutine proper :

c

c --

c ==

c --

c announce what stage the program has reached :

c

write(*,*) ’ Removing the lighting effects.’

c

c --

c define the forward transformation matrix :

c

do 10,band=1,nband,1

if (band .eq. 1) then

do 11,bnd=1,nband,1

trans(bnd,band)=1

11 continue

else

do 12,bnd=1,band-1,1

trans(bnd,band)=-1

Program Source Code 265

12 continue

trans(band,band)=band-1

do 13,bnd=band+1,nband,1

trans(bnd,band)=0

13 continue

end if

10 continue

c

c --

c invert the matrix :

c

call matrix_inv(trans,itrans,nband,16)

c

c --

c modify the inverse matrix so that the intensity component is set to

c zero (n.b. intensities are in the range -128 to 127, so this is middle

c of the range) :

c

do 14,band=1,nband,1

itrans(1,band)=0

14 continue

c

c --

c multiply the forward and, modified, reverse transformation matrices

c together, to get the full transformation matrix :

c

do 15,band=1,nband,1

do 16,bnd=1,nband,1

dtrans(bnd,band)=0

do 17,bnd2=1,nband,1

dtrans(bnd,band)=dtrans(bnd,band)+

& (itrans(bnd2,band)*trans(bnd,bnd2))

17 continue

16 continue

15 continue

c

c --

c normalise it :

c

do 18,band=1,nband,1

tot=0

do 19,bnd=1,nband,1

tot=tot+abs(dtrans(bnd,band))

19 continue

do 20,bnd=1,nband,1

dtrans(bnd,band)=dtrans(bnd,band)/tot

20 continue

266 Appendix A

18 continue

c

c --

c loop over the image :

c

do 21,y=1,ysize,1

do 22,x=1,xsize,1

c

c --

c apply the transformation matrix to a pixel :

c

do 23,band=1,nband,1

inten(band)=0

do 24,bnd=1,nband,1

itemp=images(x,y,bnd)

i=max(-127.0,itemp)

inten(band)=inten(band)+(dtrans(bnd,band)*i)

24 continue

23 continue

c

c --

c put the modified pixel values back into the image :

c

do 25,band=1,nband,1

images(x,y,band)=nint(inten(band))

25 continue

c

c --

c go on to the next pixel :

c

22 continue

21 continue

c

c --

c ==

c --

c the end of the subroutine :

c

return

c

c --

c ##

c ==

c --

c

end

c

Program Source Code 267

c --

c ##

c --

c

268 Appendix A

MATRIX INV :

c

c +--+

c | This software produced by Philip J. Naylor as part of his Ph.D. |

c | work at King’s College London, 1988-1992. This work was funded |

c | by the SERC and BP Research International. This software comes |

c | with no guarantees, and you use it at your own risk. The author |

c | will probably be prepared to help you out with any problems, if |

c | you can track him down. Philip J. Naylor, July 1992. |

c +--+

c

c --

c ##

c --

c

subroutine matrix_inv(matrix,inv_mat,n,np)

c

c **

c * *

c * subroutine to invert a matrix using LU decomposition. *

c * [ludcmp & lubksb are from "Numerical Recipes - the Art of *

c * Scientific Computing" by Press, Flannery, Teukolsky, *

c * and Vetterling, Cambridge University Press. *

c * *

c **

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c --

c integer variables :

c

c i - loop counter for columns of matrix.

c j - loop counter for rows of matrix.

c n - size of matrix (n by n).

c np - size of array holding matrix (np by np).

c

integer i,j,n,np

c

c --

c real variables :

c

c d - the parity of the number of row swaps in decomposition.

c

real d

c

c --

c real arrays :

Program Source Code 269

c

c matrix - the matrix.

c inv_mat - the inverse of the matrix.

c index - the row permutation affected by the partial pivot.

c ident - the identity matrix.

c

real matrix(np,np),inv_mat(np,np),index(16),ident(16,16)

c

c --

c ==

c ##

c --

c

c the start of the subroutine proper :

c

c --

c ==

c --

c stop if the dimensions of the arrays are too small :

c

if (np. gt. 16) then

write(*,*) ’ERROR, in MATRIX_INV - INDEX & IDENT are too small.’

stop

end if

c

c --

c since the Numerical Recipes routine overwrites the matrix it is given

c with the inverse (and we want to preserve the original) copy matrix

c into inv_mat (and set up the identity matrix, at the same time) :

c

do 10,j=1,n,1

do 11,i=1,n,1

ident(i,j)=0

inv_mat(i,j)=matrix(i,j)

11 continue

ident(j,j)=1

10 continue

c

c --

c do the LU decomposition :

c

call ludcmp(inv_mat,n,np,index,d)

c

c --

c do back substitution to get the inverse (returned in ident) :

do 12,j=1,n,1

call lubksb(inv_mat,n,np,index,ident(1,j))

270 Appendix A

12 continue

c

c --

c copy the inverse to where we want it :

c

do 13,j=1,n,1

do 14,i=1,n,1

inv_mat(i,j)=ident(i,j)

14 continue

13 continue

c

c --

c ==

c --

c the end of the subroutine :

c

return

c

c --

c ##

c ==

c --

c

end

c

c --

c ##

c --

c

Program Source Code 271

FILTDEF :

c

c +--+

c | This software produced by Philip J. Naylor as part of his Ph.D. |

c | work at King’s College London, 1988-1992. This work was funded |

c | by the SERC and BP Research International. This software comes |

c | with no guarantees, and you use it at your own risk. The author |

c | will probably be prepared to help you out with any problems, if |

c | you can track him down. Philip J. Naylor, July 1992. |

c +--+

c

c --

c ##

c --

c

subroutine filtdef(filter,fsize)

c

c **

c * *

c * a subroutine to define one of a set of normalised, 2-D, *

c * circularly symmetric smoothing filters. *

c * [taken from unattributed Pascal code in another program] *

c * *

c **

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c --

c

implicit real (a-z)

c

c --

c integer variables :

c

c ftype - the type of filter.

c fsize - the diameter of the filter.

c

integer ftype,fsize

c

c --

c real arrays :

c

c filter - the filter.

c

real filter(2500)

c

c --

272 Appendix A

c ==

c >>>>>>>>>>>> function declarations <<<<<<<<<<<<

c --

c integer functions :

c

c intin - ’eric’ library routine for prompting for, and inputting,

c an integer.

c

integer intin

c

c --

c logical functions :

c

c yes - ’eric’ library routine for asking a question, and

c inputting a yes/no response.

c

logical yes

c

c --

c ==

c ##

c --

c

c the start of the subroutine proper :

c

c --

c ==

c --

c get the details of the desired filter, from the user :

c

write(*,*) ’ Smoothing filter type : 1 - Canny (Gaussian)’

write(*,*) ’ 2 - Cubic Spline’

write(*,*) ’ 3 - Petrou’

write(*,*) ’ 4 - Spacek’

ftype=intin(’Choice >’,1,1,4)

fsize=intin(’Smoothing filter size (square) >’,7,1,50)

c

c --

c

if (ftype .eq. 1) then

c

c{ Generate 2-D Gaussian smoothing filter }

c

emax = (fsize + 1.0)/2.0

iend = int(emax)

w = emax

s = -log(0.001)/(w*w)

Program Source Code 273

tot=0.0

do 10, i=1,fsize,1

i1 = i

i2 = fsize+1-i1

eye1 = iend-i1

do 20,j=1,fsize,1

j1 = j

j2 = fsize+1-j1

jay1 = iend-j1

x = sqrt(eye1*eye1 + jay1*jay1)

if (x .gt. w) then

filter(((j1-1)*fsize)+i1) = 0.0

else

a = exp(-s*x*x)

tot=tot+a

filter(((j1-1)*fsize)+i1) = a

end if

20 continue

10 continue

do 25,i=1,(fsize*fsize),1

filter(i)=filter(i)/tot

25 continue

c

c --

c

else if (ftype .eq. 2) then

c

c{ Generate 2-D spline smoothing filter }

c

emax = (fsize + 1.0)/2.0

iend = int(emax)

w = emax

tot=0.0

do 30,i=1,fsize,1

i1 = i

i2 = fsize+1-i1

eye1 = iend-i1

do 40,j=1,fsize,1

j1 = j

j2 = fsize+1-j1

jay1 = iend-j1

x = sqrt(eye1*eye1 + jay1*jay1)

if (x .gt. w) then

filter(((j1-1)*fsize)+i1) = 0.0

else

a = -3.0*((x/w)*(x/w)*(x/w)*(x/w)) + 8.0*(x/w)*(x/w)*(x/w)

& - 6.0*(x/w)*(x/w) + 1.0

274 Appendix A

tot=tot+a

filter(((j1-1)*fsize)+i1) = a

end if

40 continue

30 continue

do 45,i=1,(fsize*fsize),1

filter(i)=filter(i)/tot

45 continue

c

c --

c

else if (ftype .eq. 3) then

c

c{ Generate 2-D optimal smoothing filter (Petrou) }

c

c1 = 1.316134

c2 = 0.8223482

c3 = -0.03200267

c4 = -0.03552345

c5 = -0.78682475

al = 3.16

aki = -0.5164

akk = -1.715564

emax = (fsize + 1.0)/2.0

iend = int(emax)

w = emax

ak = akk/w

tot=0.0

r1 = w

rw = r1*al

x1 = -sin(rw/w)-cos(rw/w)

x2 = c1*exp((-rw)/w) + c4*exp(rw/w)

x3 = c2*exp((-rw)/w) - c3*exp(rw/w)

x4 = -sin(rw/w) + cos(rw/w)

x5 = w*x1*x2/(al*2.0) + w*x4*x3/(al*2.0) - c5*r1+aki*w

amin = x5*ak

do 50,i=1,fsize,1

i1 = i

i2 = fsize+1-i1

eye1 = iend-i1

do 60,j=1,fsize,1

j1 = j

j2 = fsize+1-j1

jay1 = iend-j1

r1 = sqrt(eye1*eye1 + jay1*jay1)

rw = r1*al

if (r1 .gt. w) then

Program Source Code 275

filter(((j1-1)*fsize)+i1) = 0.0

else

rww = rw/w

ew = exp(rww)

sw = sin(rww)

cw = cos(rww)

x1 = -sw-cw

x2 = (c1/ew) + (c4*ew)

x3 = (c2/ew) - (c3*ew)

x4 = -sw+cw

x5 = w*x1*x2/(al*2.0) + w*x4*x3/(al*2.0) - r1*c5 + aki*w

a = (x5*ak-amin)/(1.0-amin)

tot=tot+a

filter(((j1-1)*fsize)+i1) = a

end if

60 continue

50 continue

do 65,i=1,(fsize*fsize),1

filter(i)=filter(i)/tot

65 continue

c

c --

c

else if (ftype .eq. 4) then

c

c{ Generate 2-D optimal smoothing filter (Spacek) }

c

c1 = -13.3816

c2 = 2.7953

c3 = 0.0542

c4 = -3.7953

c5 = 1.0

al = 1.0

aki = -9.3961

akk = 1.776

emax = (fsize + 1.0)/2.0

iend = int(emax)

w = emax

ak = akk/w

tot=0.0

r1 = w

rw = r1*al

x1 = -sin(rw/w)-cos(rw/w)

x2 = c1*exp(-rw/w) + c4*exp(rw/w)

x3 = c2*exp(-rw/w) - c3*exp(rw/w)

x4 = -sin(rw/w) + cos(rw/w)

x5 = w*x1*x2/(al*2.0) + w*x4*x3/(al*2.0) - c5*r1 + aki*w

276 Appendix A

amin = x5*ak

do 70,i=1,fsize,1

i1 = i

i2 = fsize+1-i1

eye1 = iend-i1

do 80,j=1,fsize,1

j1 = j

j2 = fsize+1-j1

jay1 = iend-j1

r1 = sqrt(eye1*eye1 + jay1*jay1)

rw = r1*al

if (r1 .gt. w) then

filter(((j1-1)*fsize)+i1) = 0.0

else

rww = rw/w

ew = exp(rww)

sw = sin(rww)

cw = cos(rww)

x1 = -sw-cw

x2 = (c1/ew) + (c4*ew)

x3 = (c2/ew) - (c3*ew)

x4 = -sw+cw

x5 = w*x1*x2/(al*2.0) + w*x4*x3/(al*2.0) - r1*c5 + aki*w

a = (x5*ak-amin)/(1.0-amin)

tot=tot+a

filter(((j1-1)*fsize)+i1) = a

end if

80 continue

70 continue

do 85,i=1,(fsize*fsize),1

filter(i)=filter(i)/tot

85 continue

c

c --

c selected filter number is not on the list :

c

else

write(*,*) ’Unknown filter type...’

stop

end if

c

c --

c ==

c --

c the end of the subroutine :

c

return

Program Source Code 277

c

c --

c ##

c ==

c --

c

end

c

c --

c ##

c --

c

278 Appendix A

CONVOLVE :

c

c +--+

c | This software produced by Philip J. Naylor as part of his Ph.D. |

c | work at King’s College London, 1988-1992. This work was funded |

c | by the SERC and BP Research International. This software comes |

c | with no guarantees, and you use it at your own risk. The author |

c | will probably be prepared to help you out with any problems, if |

c | you can track him down. Philip J. Naylor, July 1992. |

c +--+

c

c --

c ##

c --

c

subroutine convolve(image,xsize,ysize,nband,filter,fsize)

c

c **

c * *

c * a subroutine to convolve image bands with a given filter. *

c * *

c **

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c --

c integer variables :

c

c band - the specral band number to be filtered.

c fsize - size of the filter (in both x & y).

c i - loop counter for stepping through filter elements (x).

c j - loop counter for stepping through filter elements (y).

c i1 - loop counter for stepping through patch of image (x).

c j1 - loop counter for stepping through patch of image (y).

c itemp - integer pixel value.

c x - loop counter for stepping through image (x).

c y - loop counter for stepping through image (y).

c xsize - size of image in x direction.

c ysize - size of image in y direction.

c nband - number of spectral bands.

c

integer xsize,ysize,nband,fsize,x,y,i,j,band,i1,j1,itemp

c

c --

c byte arrays :

c

c image - the image data.

Program Source Code 279

c temp - temporary storage for a single filtered band.

c

byte image(xsize,ysize,nband),temp(512,512)

c

c --

c real variables :

c

c conv - the local result of filtering a patch of the image.

c

real conv

c

c --

c real arrays :

c

c filter - the smoothing filter.

c

real filter(fsize,fsize)

c

c --

c ==

c ##

c --

c

c

c the start of the subroutine proper :

c

c --

c ==

c --

c announce what stage the program has reached :

c

write(*,*) ’ Smoothing the data.’

c

c --

c loop over all the spectral bands :

c

do 10,band=1,nband,1

c

c --

c copy the current band into the array where the result will be stored

c (these means that there is no "black" border when the result is copied

c back into the original array) :

c

do 1,y=1,ysize,1

do 2,x=1,xsize,1

temp(x,y)=image(x,y,band)

2 continue

280 Appendix A

1 continue

c

c --

c loop over the region of the image which does not result in the filter

c going off of the edge :

c

do 20,y=(fsize/2)+1,ysize-(fsize/2),1

do 30,x=(fsize/2)+1,xsize-(fsize/2),1

c

c --

c initialise the local result to zero :

c

conv=0.0

c

c --

c loop over the filter, and the associated patch of image, doing the

c convoloution (n.b. the image coordinates are relative to the centre of

c the filter) :

c

do 40,j=1,fsize,1

do 50,i=1,fsize,1

i1=i-((fsize/2)+1)

j1=j-((fsize/2)+1)

itemp=image(x+i1,y+j1,band)

conv=conv+

& ((itemp+128)*filter(i,j))

50 continue

40 continue

c

c --

c store the local result in the output array :

c

temp(x,y)=nint(conv)-128

c

c --

c go on to the next patch position :

c

30 continue

20 continue

c

c --

c copy the result back into the original image band :

c

do 60,y=1,ysize,1

do 70,x=1,xsize,1

image(x,y,band)=temp(x,y)

70 continue

Program Source Code 281

60 continue

c

c --

c go on to the next spectral band :

c

10 continue

c

c --

c ##

c --

c the end of the subroutine :

c

return

c

c --

c ##

c ==

c --

c

end

c

c --

c ##

c --

c

282 Appendix A

GLCOOC :

c

c +--+

c | This software produced by Philip J. Naylor as part of his Ph.D. |

c | work at King’s College London, 1988-1992. This work was funded |

c | by the SERC and BP Research International. This software comes |

c | with no guarantees, and you use it at your own risk. The author |

c | will probably be prepared to help you out with any problems, if |

c | you can track him down. Philip J. Naylor, July 1992. |

c +--+

c

c --

c ##

c --

c

subroutine glcooc(images,xsize,ysize,nband,numlev,

& classave,classwid,nclass,dist)

c

c **

c * *

c * a subroutine to find the peaks in coocurrence space. *

c * *

c **

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c --

c integer variables :

c

c band - spectral band number.

c dist - the width of border to ignore (to avoid edge effects

c of smoothing).

c nband - number of spectral bands.

c nclass - number of classes.

c numlev - number of data bins.

c peak - peak number (in a particular band).

c pk - alternative to peak.

c pos - pointer to an array element.

c positn - alternative pointer to an array element.

c smooth - standard deviation of the gaussian used (in fourier

c space) to smooth the leading diagonal of the

c cooccurrence matrix and its first two derivatives.

c xsize - image size (x).

c ysize - image size (y).

c

integer band,nband,nclass,numlev,peak,pk,pos,positn

integer xsize,ysize,dist

Program Source Code 283

c

c --

c integer arrays :

c

c classave - class mean vectors.

c classwid - class widths (parallel to axes).

c height - the heights of the peaks (in a particular band).

c npeak - the number of peaks found in each band.

c peakpos - the positions of the peaks found in each band.

c peakwid - the widths of the peaks found in each band.

c vector - a unit vector, describing the cooccurrence direction

c (orientation of the cooccurrence filter) :

c {0,-1} => vertical (north, 0 degrees).

c {1,-1} => diagonal (northeast, 45 degrees).

c {1,0} => horizontal (east, 90 degrees).

c {1,1} => diagonal (southeast, 135 degrees).

c

integer classave(16,800),classwid(16,800),npeak(16)

integer peakpos(16,800),peakwid(16,800),vector(2)

c

c --

c byte arrays :

c

c images - as in the main program, but redimensioned so as to

c make the accessing of the data more obvious.

c

byte images(xsize,ysize,nband)

c

c --

c real arrays :

c

c hist - the leading diagonal of an infra-band cooccurrence

c matrix, after the matrix has been convolved with a

c / 1 1 0 \ filter.

c | 1 2 1 |

c \ 0 1 1 /

c

real hist(0:255)

c

c --

c ==

c ##

c --

c

c

c the start of the subroutine proper :

c

284 Appendix A

c --

c ==

c --

c announce what stage the program has reached :

c

write(*,*) ’ Analysing infra-band cooccurrence matrices.’

c

c --

c initialize the number of peaks found, in each band, as zero :

c

do 10,band=1,nband,1

npeak(band)=0

10 continue

c

c --

c step through the bands :

c

do 20,band=1,nband,1

c

c --

c call the subroutine which forms the leading diagonal of the glcm of

c this band :

c

call diag(images,band,xsize,ysize,nband,numlev,

& dist,hist)

c

c --

c call the subroutine which finds the interesting features (maxima,

c minima, etc.) in the leading diagonal :

c

call hstanal(hist,numlev,peakpos,peakwid,nband,npeak,band)

c

c --

c sort the peaks into ascending order of position :

c

call sort(peakpos,peakwid,npeak,band)

c

c --

c if more than one peak was found in this band, go through all the peaks

c and merge together any that are very close together :

c

if (npeak(band) .gt. 1) then

positn=1

32 if ((peakpos(band,(positn+1))-peakpos(band,positn))

& .le. 3) then

peakpos(band,positn)=

& (peakpos(band,positn)+peakpos(band,(positn+1)))/2

Program Source Code 285

peakwid(band,positn)=

& max(peakwid(band,positn),peakwid(band,(positn+1)))

do 33,pos=(positn+1),(npeak(band)-1),1

peakpos(band,pos)=peakpos(band,(pos+1))

peakwid(band,pos)=peakwid(band,(pos+1))

33 continue

npeak(band)=npeak(band)-1

positn=positn-1

end if

positn=positn+1

if (positn .le. (npeak(band)-1)) goto 32

end if

c --

c output the number of peaks found, in this band, their locations, and

c their along-axis half-widths :

c

write(*,’(1x,i2,1x,a19,1x,i3)’) npeak(band),

& ’peaks found in band’,band

write(9,’(1x,i2,1x,a19,1x,i3)’) npeak(band),

& ’peaks found in band’,band

do 35,peak=1,npeak(band),1

write(9,’(1x,a10,1x,i3,4x,a7,1x,i3)’)

& ’location :’,peakpos(band,peak),

& ’width :’,peakwid(band,peak)

35 continue

c

c --

c go on to the next spectral band :

c

20 continue

c

c --

c ==

c --

c if there is more than one spectral band of data, call the subroutine

c which finds out how the peaks link together across the bands :

c

if (nband .gt. 1) then

call findpk(images,xsize,ysize,nband,npeak,peakpos,

& peakwid,nclass,classave,classwid)

c

c otherwise, just set the class means equal to the peak positions, the

c class along-axis half-widths equal to the peak along-axis half-widths,

c and the number of class found to the number of peaks found :

c

else

do 40,peak=1,npeak(1),1

286 Appendix A

classave(1,peak)=peakpos(1,peak)

classwid(1,peak)=peakwid(1,peak)

40 continue

nclass=npeak(1)

end if

c

c --

c ==

c --

c the end of the subroutine :

c

return

c

c --

c ##

c ==

c --

c

end

c

c --

c ##

c --

c

Program Source Code 287

DIAG :

c

c +--+

c | This software produced by Philip J. Naylor as part of his Ph.D. |

c | work at King’s College London, 1988-1992. This work was funded |

c | by the SERC and BP Research International. This software comes |

c | with no guarantees, and you use it at your own risk. The author |

c | will probably be prepared to help you out with any problems, if |

c | you can track him down. Philip J. Naylor, July 1992. |

c +--+

c

c --

c ##

c --

c

subroutine diag(images,band,xsize,ysize,nband,numlev,dist,hist)

c

c **

c * *

c * a subroutine to form the diagonal of an infra-band *

c * coocurrence matrix. *

c * *

c **

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c --

c integer variables :

c

c band - spectral band number.

c direct - indicates cooccurrence direction :

c 1 => 0 degrees to the vertical (north).

c 2 => 45 degrees to the vertical (north).

c 3 => 90 degrees to the vertical (north).

c 4 => 135 degrees to the vertical (north).

c dist - the width of image border to ignore.

c inten1 - the value returned by the first half of the

c cooccurrence filter.

c inten2 - the value returned by the second half of the

c cooccurrence filter.

c itemp - temporary variable, used to convert byte type

c to integer type.

c nband - number of spectral bands.

c numlev - number of data bins.

c x - x coordinate of position in image.

c xsize - size of image in x direction.

c y - y coordinate of position in image.

288 Appendix A

c ysize - size of image in y direction.

c

integer band,direct,inten1,inten2,itemp,nband,numlev,dist,x

integer xsize,y,ysize

c

c --

c integer arrays :

c

c vector - cooccurrence direction vector.

c

integer vector(2)

c

c --

c byte arrays :

c

c images - the image data.

c

byte images(xsize,ysize,nband)

c

c --

c real arrays :

c

c hist - the diagonal of the cooccurrence matrix (histogram).

c

real hist(0:255)

c

c --

c ===

c ###

c ---

c

c

c the start of the subroutine proper :

c

c ---

c ===

c ---

c initialize the elements of the diagonal of the cooccurrence matrix to

c zero :

c

do 5,inten1=0,(numlev-1),1

hist(inten1)=0

5 continue

c

c --

c loop over the portion of the image which won’t result in any part of

c the coocurrence filter going off of the edge :

Program Source Code 289

c

do 10,y=(1+dist),(ysize-dist),1

do 20,x=(1+dist),(xsize-dist),1

itemp=images(x,y,band)

inten1=itemp+128

c

c --

c loop over the cooccurrence directions :

c

do 1,direct=1,4,1

vector(1)=min(1.0,direct-1)

vector(2)=max(-1.0,direct-3)

itemp=images(x+vector(1),y+vector(2),band)

inten2=itemp+128

c

c if (inten1,inten2) lies within one greylevel of the leading diagonal,

c then add its effect to the smoothed leading diagonal :

c

if (inten1 .eq. inten2) then

hist(inten1)=hist(inten1)+2

if (inten1 .lt. (numlev-1)) then

hist(inten1+1)=hist(inten1+1)+1

else if (inten1 .gt. 0) then

hist(inten1-1)=hist(inten1-1)+1

end if

else if (abs(inten1-inten2) .eq. 1) then

hist(inten1)=hist(inten1)+1

hist(inten2)=hist(inten2)+1

end if

c

c --

c go on to the next cooccurrence direction :

c

1 continue

c --

c go on to the next pixel :

c

20 continue

10 continue

c

c --

c ==

c --

c the end of the subroutine :

c

return

c

290 Appendix A

c --

c ##

c ==

c --

c

end

c

c --

c ##

c --

c

Program Source Code 291

HSTANAL :

c

c +--+

c | This software produced by Philip J. Naylor as part of his Ph.D. |

c | work at King’s College London, 1988-1992. This work was funded |

c | by the SERC and BP Research International. This software comes |

c | with no guarantees, and you use it at your own risk. The author |

c | will probably be prepared to help you out with any problems, if |

c | you can track him down. Philip J. Naylor, July 1992. |

c +--+

c

c --

c ##

c --

c

subroutine hstanal(hist,numlev,peakpos,peakwid,nband,npeak,band)

c

c **

c * *

c * a subroutine to find the peaks in a one dimensional *

c * feature (sub)space, using an adaptive version of the CLEAN *

c * deconvolution algorithm. *

c * *

c **

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c --

c integer variables :

c

c band - spectral band number.

c mpos - position of a maximum.

c nband - number of spectral bands.

c numlev - number of data bins.

c offset - position within the smoothing filter.

c peak - current peak number.

c pos - position within the feature space.

c smooth - half-width of smoothing filter.

c

integer numlev,nband,band,pos,mpos,peak,offset,smooth

c

c --

c integer arrays :

c

c npeak - the number of peaks found in each dimension.

c peakpos - the positions of the peaks found in each dimension.

c peakwid - the widths of the peaks found in each dimension

292 Appendix A

c (taken to be five sigma).

c

integer peakpos(16,800),peakwid(16,800),npeak(16)

c

c --

c real variables :

c

c amaxi - the height of the first maximum found (the global max.).

c gauss - the value of a Gaussian curve at some point.

c height - height of the current peak (taken to be the same as the

c height of the current maximum).

c maxi - the height of the current maximum.

c stdev - the standard deviation of the current peak.

c thresh - threshold at which to stop deconvolution (this occurs

c when the height of a peak is less than this fraction

c of the height of the first peak found).

c

real gauss,maxi,stdev,height,thresh,amaxi

c

c --

c real arrays :

c

c hist - the 1-D feature space (histogram).

c temp - temporary storage, used when smoothing the histogram.

c

real hist(0:(numlev-1)),temp(0:255)

c

c --

c ==

c >>>>>>>>>>>> function declarations <<<<<<<<<<<<

c --

c real functions :

c

c sigma - returns the standard deviation of a peak.

c

real sigma

c

c --

c ==

c ##

c --

c

c the start of the subroutine proper :

c

c --

c ==

c --

Program Source Code 293

c initialise the number of peaks found :

c

peak=0

npeak(band)=0

c

c --

c set the various parameters (n.b. these are "MAGIC NUMBERS", they may not

c be optimal, and it may be better to put them under user control) :

c

thresh=0.005

if (nband .eq. 1) thresh=0.05

smooth=2

c

c --

c smooth the histogram, to reduce the effects of noise :

c

do 5,pos=smooth,(numlev-smooth-1),1

temp(pos)=0

do 6,offset=-1*smooth,smooth,1

temp(pos)=temp(pos)+(hist(pos+offset)/((2*smooth)+1))

6 continue

5 continue

do 7,pos=smooth,(numlev-smooth-1),1

hist(pos)=temp(pos)

7 continue

c

c --

c find the maximum (if this is the first pass, record it for later use) :

c

40 maxi=-1000000

do 10,pos=0,(numlev-1),1

if (hist(pos) .gt. maxi) then

maxi=hist(pos)

mpos=pos

if (peak .eq. 0) amaxi=maxi

end if

10 continue

c

c --

c if we have deconvolved down to the threshold (i.e. we are now in the

c noise), stop :

c

if (maxi .lt. (amaxi*thresh)) goto 30

c

c --

c find the standard deviation of the peak associated with the maximum :

c

294 Appendix A

stdev=sigma(mpos,hist,numlev)

c

c --

c find the amplitude of the peak associated with the maximum :

c

height=hist(mpos)

c

c --

c subtract out the peak found (setting negative values to zero) :

c

do 20,pos=0,(numlev-1),1

gauss=height*exp(-0.5*(((pos-mpos)**2.0)/(stdev**2.0)))

hist(pos)=max(0,nint(real(hist(pos))-gauss))

20 continue

c

c --

c ignoring peaks which have standard deviations less than one bin width

c (they are, most likely, due to noise) record details of the peak found :

c

if (stdev .gt. 1.0) then

peak=peak+1

if (peak .gt. 800) then

write(*,’(1x,a23,i1,a1)’) ’Too many peaks in band ’,band,’.’

stop

end if

peakpos(band,peak)=mpos

peakwid(band,peak)=nint(5.0*stdev)

end if

c

c --

c repeat for the next peak :

c

goto 40

c

c --

c now we have finished, record the total number of peaks found in this

c dimension :

c

30 npeak(band)=peak

c

c --

c ==

c --

c the end of the subroutine :

c

return

c

Program Source Code 295

c --

c ##

c ==

c --

c

end

c

c --

c ##

c --

c

296 Appendix A

SIGMA :

c

c +--+

c | This software produced by Philip J. Naylor as part of his Ph.D. |

c | work at King’s College London, 1988-1992. This work was funded |

c | by the SERC and BP Research International. This software comes |

c | with no guarantees, and you use it at your own risk. The author |

c | will probably be prepared to help you out with any problems, if |

c | you can track him down. Philip J. Naylor, July 1992. |

c +--+

c

c --

c ##

c --

c

real function sigma(mpos,hist,numlev)

c

c ***

c * *

c * a function to estimate the standard deviation of *

c * a peak, by trying to fit a gaussian function to it. *

c * *

c ***

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c --

c integer variables :

c

c band - spectral band number.

c maxi - the upper limit of the range over which the gaussian

c is to be fitted.

c mean - the position of the centre of the gaussian.

c mini - the lower limit to the range over which the gaussian

c is to be fitted.

c pos - variable which the gaussian is a function of.

c

integer band,maxi,mean,mini,pos,mpos

c

c --

c real variables :

c

c diff - the difference (in area) between the gaussian and the

c peak.

c gauss - the value taken by the gaussian function, for a

c particular value of pos.

c oldst - the previous estimate of the standard deviation.

Program Source Code 297

c oldst2 - the estimate of the standard deviation before the

c previous one.

c

real diff,gauss,oldst,oldst2

c

c --

c real arrays :

c

c hist - the histogram being analysed.

c

real hist(0:(numlev-1))

c

c --

c ==

c ##

c --

c

c

c the start of the function proper :

c

c --

c ==

c --

c initialize the estimates of the standard deviation :

c

oldst=0

oldst2=0

c

c start with a very narrow gaussian as the initial estimate.

c

sigma=1.0

c

c --

c centre the gaussian on the peak position :

c

mean=mpos

c

c --

c the gaussian is to be fitted to a range of 21 points over the centre

c of the peak (provided this range does not run off either end of the

c leading diagonal) :

c

mini=max(0,(mean-10))

maxi=min((mean+10),(numlev-1))

c

c --

c initialize the difference, between the gaussian and the peak, to

298 Appendix A

c zero :

c

30 diff=0

c

c --

c loop over the selected range, calculating the difference

c between the area under the gaussian and the area under the peak :

c

do 10,pos=mini,maxi,1

gauss=real(hist(mpos))*exp(-0.5*(real((pos-mean)**2)

& /real(sigma**2.0)))

diff=diff+gauss-hist(pos)

10 continue

c

c --

c if the difference is greater than zero, the gaussian must be too wide,

c so reduce sigma :

c

if (diff .gt. 0.0) sigma=sigma*0.9

c

c --

c if the difference is less than zero, the gaussian must be too narrow,

c so increase sigma :

c

if (diff .lt. 0.0) sigma=sigma*1.1

c

c --

c if diff has not converged, or seriously diverged, record this value

c of diff, and the previous one, and try another iteration :

c

if ((abs(sigma-oldst2) .ge. 0.2) .and. (sigma .lt. 25)) then

oldst2=oldst

oldst=sigma

goto 30

end if

c

c --

c ##

c ==

c --

c the end of the function :

c

return

c

c --

c ==

c --

Program Source Code 299

c

end

c

c --

c ##

c --

c

300 Appendix A

SORT :

c

c +--+

c | This software produced by Philip J. Naylor as part of his Ph.D. |

c | work at King’s College London, 1988-1992. This work was funded |

c | by the SERC and BP Research International. This software comes |

c | with no guarantees, and you use it at your own risk. The author |

c | will probably be prepared to help you out with any problems, if |

c | you can track him down. Philip J. Naylor, July 1992. |

c +--+

c

c --

c ##

c --

c

subroutine sort(peakpos,peakwid,npeak,band)

c

c **

c * *

c * a subroutine to sort the columns of one row of two arrays *

c * with respect to the columns of the first one. *

c * (ascending order) *

c * [NOT OPTIMAL] *

c * *

c **

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c ==

c integer variables :

c

c band - the row number

c first - the smallest value in the unsorted part

c fst - the position of the smallest value in the unsorted

c part

c pos - loop counter for going through array

c start - start of unsorted portion of array

c temp1 - temporary storage for swapping elements of first

c array

c temp2 - temporary storage for swapping elements of second

c array

c

integer band,pos,temp1,temp2,first,start,fst

c

c --

c integer arrays :

c

Program Source Code 301

c npeak - the number of elements in each row

c peakpos - the first (index) array

c peakwid - the second array

c

integer peakpos(16,800),peakwid(16,800),npeak(16)

c

c --

c ==

c ##

c --

c

c

c the start of the subroutine proper :

c

c --

c ==

c --

c start off assuming the whole array is unsorted :

c

start=1

c

c --

c find the minimum element in the unsorted part of the array :

c

20 first=1000000

do 10,pos=start,npeak(band),1

if (peakpos(band,pos) .lt. first) then

first=peakpos(band,pos)

fst=pos

end if

10 continue

c

c --

c swap the array elements over, so that the minimum found in the unsorted

c part becomes the last element in the sorted part :

c

temp1=peakpos(band,start)

temp2=peakwid(band,start)

peakpos(band,start)=peakpos(band,fst)

peakwid(band,start)=peakwid(band,fst)

peakpos(band,fst)=temp1

peakwid(band,fst)=temp2

c

c --

c one more element has been placed in the right order :

c

start=start+1

302 Appendix A

c

c --

c if there are any more elements to sort, go back and do them :

c

if (start .lt. npeak(band)) goto 20

c

c --

c ##

c ==

c --

c the end of the subroutine :

c

return

c

c --

c ==

c --

c

end

c

c --

c ##

c --

c

Program Source Code 303

FINDPK :

c

c +--+

c | This software produced by Philip J. Naylor as part of his Ph.D. |

c | work at King’s College London, 1988-1992. This work was funded |

c | by the SERC and BP Research International. This software comes |

c | with no guarantees, and you use it at your own risk. The author |

c | will probably be prepared to help you out with any problems, if |

c | you can track him down. Philip J. Naylor, July 1992. |

c +--+

c

c --

c ##

c --

c

subroutine findpk(images,xsize,ysize,nband,npeak,peakpos,

& peakwid,nclass,classave,classwid)

c

c **

c * *

c * a subroutine to associate, across all the bands, *

c * the peaks found in single band cooccurrence matrices. *

c * [jacobi & eigsrt are from "Numerical Recipes - the Art *

c * of Scientific Computing" by Press, Flannery, *

c * Teukolsky, and Vetterling, *

c * Cambridge University Press. *

c * *

c **

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c --

c integer variables :

c

c band - spectral band number.

c bigc - class number of the "King of the Castle".

c bnd - spectral band number.

c class - class number.

c class2 - class number.

c classif - peak combination number, e.g. :

c {peak 1 in band 1, peak 1 in band 2,..., peak 1 in

c band n} => classif = 1,

c {peak 2 in band 1, peak 1 in band 2,..., peak 1 in

c band n} => classif = 2,

c etc..

c count - used to loop through the possible values of classif.

c dis - the euclidean distance (in 1-dimensional histogram

304 Appendix A

c space) between the point associated with a particular

c pixel and a particular peak (in a particular band).

c itemp - temporary variable, used to convert from byte type to

c integer type.

c limit - since posclass (see below) could be a very large

c number, the possible classes (values of classif) are

c considered in blocks of 1000000 at a time. limit

c indicates the value of classif at the start of the

c block currently under consideration.

c min - the euclidean distance (in 1-dimensional histogram

c space) between the point associated with a particular

c pixel and the nearest peak (in a particular band).

c nband - number of bands.

c nc - class number.

c nclass - number of classes.

c near - the number of the peak nearest to point associated

c with a particular pixel (in 1-dimensional histogram

c space, in a particular band).

c nrot - number of rotations used by Numerical Recipes jacobi

c r

c posclass - the number of possible classes, given the number of

c peaks found in each band.

c pk - peak number (in a particular band).

c small - the smallest number of pixels which will be

c considered as constituting a cluster.

c x - loop counter for going through image (x).

c xsize - image size (x).

c y - loop counter for going through image (y).

c ysize - image size (y).

c

integer band,bnd,class,classif,count,dis,limit,min,nband,nclass

integer near,posclass,pk,small,x,xsize,y,ysize

integer class2,nc,bigc,nrot,itemp

c

c --

c integer arrays :

c

c classave - class mean vectors.

c classave2 - class mean vectors.

c classwid - class widths.

c classwid2 - class widths.

c npeak - number of peaks in 1-D sub-spaces.

c peak - the set of peak numbers with which a particular pixel

c is associated.

c peakpos - positions of peaks in 1-D sub-spaces.

c peakwid - widths of peaks in 1-D sub-spaces.

c prod - used in calculating classif.

Program Source Code 305

c

integer classave(16,800),classwid(16,800),classave2(16,800)

integer npeak(16),peak(16),peakpos(16,800),peakwid(16,800)

integer prod(16),classwid2(16,800)

c

c --

c 2 byte integer arrays :

c

c number - the number of pixels in a possible class.

c

integer*2 number(1000000)

c

c --

c byte arrays :

c

c images - image data.

c

byte images(xsize,ysize,nband)

c

c --

c real variables :

c

c d - Euclidean distance from a feature vector to a cluster

c centre.

c div - the transformed divergence between two classes.

c div1 - the Euclidean distance, in one dimension, between a

c feature vector and a cluster centre.

c div2 - the Euclidean distance, in one dimension, between a

c feature vector and a cluster centre.

c mcs - maximum class size.

c md - the minimum Euclidean distance from a feature vector

c to a cluster centre (with respect to the cluster

c number).

c thresh - the threshold on the transformed divergence, which

c defines the "neighbourhood" of a cluster.

c

real d,md,div,thresh,div1,div2,mcs

c

c --

c real arrays :

c

c classsiz - cluster sizes.

c covar - cluster covariance matrix.

c covar2 - cluster covariance matrix.

c diagn - diagonal matrix (used in matrix inversion).

c eval - eigenvalues of a matrix (used in matrix inversion).

c evec - eigenvectors of a matrix (used in matrix inversion).

306 Appendix A

c icovar - cluster inverse covariance matrix.

c icovar2 - cluster inverse covariance matrix.

c

real covar(16,16,800),icovar(16,16,800),eval(16),evec(16,16)

real diagn(16,16),classsiz(800),covar2(16,16,800)

real icovar2(16,16,800)

c

c --

c ==

c ##

c --

c

c

c the start of the subroutine proper :

c

c --

c ==

c --

c announce what stage the program has reached :

c

write(*,*) ’ Linking the peaks.’

c

c --

c determine a lower limit on the size of cluster that will be considered

c to constitute a class, 0.025% of the image, or 200 pixels, whichever is

c the larger, (n.b. this is a "MAGIC NUMBER", it is not necessarily

c optimal, and may need to be under user control) :

c

small=(xsize*ysize)/4000

if (small .lt. 200) small=200

small=small-32768

c

c ** n.b. -32768 is the smallest number which can be stored in a **

c ** two byte variable, and in this routine is used as ’zero’. **

c

c --

c calculate the maximum possible number of classes, given the number of

c peaks found in each band :

c

posclass=1

do 10,band=1,nband,1

posclass=posclass*npeak(band)

10 continue

c

c --

c initialize the number of classes found to zero :

c

Program Source Code 307

class=0

c

c --

c because of memory restrictions, the possible classes can only be

c checked out so many at a time (in this case 1000000 at a time) :

c

do 20,limit=1,posclass,1000000

c

c --

c initialize the number of pixels in each possible class under

c consideration to ’zero’ (-32768) :

c

do 30,classif=1,1000000,1

number(classif)=-32768

30 continue

c

c --

c step through the image :

c

do 40,y=1,ysize,1

do 50,x=1,xsize,1

c

c --

c step through the bands :

c

do 60,band=1,nband,1

c

c --

c find out which peak (in the current band) this pixel is closest to

c (in 1-dimensional histogram space, using euclidean distance) :

c

min=1000000

do 70,pk=1,npeak(band),1

dis=abs(images(x,y,band)+128-peakpos(band,pk))

if (dis .lt. min) then

min=dis

near=pk

end if

70 continue

c

c partial calculation of the peak combination number for the set of

c peaks that this pixel is closest to :

c

prod(band)=1

do 80,bnd=1,(band-1),1

prod(band)=prod(band)*npeak(bnd)

80 continue

308 Appendix A

if (band .eq. 1) then

classif=near

else

classif=classif+(prod(band)*(near-1))

end if

c

c --

c go on to the next spectral band :

c

60 continue

c

c --

c if the peak combination number is one of the ones under consideration

c at the moment, and the number of pixels in the corresponding class yet

c reached the lower limit, add 1 to the number of pixels in that class

c (otherwise go on to the next pixel, or the next block of possible

c classes, as appropriate) :

c

if ((classif .lt. limit) .or.

& (classif .gt. (limit+999999))) then

goto 50

else

if (number(classif-limit+1) .lt. small) then

number(classif-limit+1)=number(classif-limit+1)+1

end if

end if

c

c --

c go on to the next pixel :

c

50 continue

40 continue

c

c --

c step through the classes under consideration :

c

do 90,count=limit,(limit+999999),1

c

c --

c set classif equal to the peak combination number :

c

classif=count

c

c if the number of pixels in this class has reached the lower limit,

c a new class has been found :

c

if (number(classif-limit+1) .ge. small) then

Program Source Code 309

class=class+1

c

c if this class takes the number of class found over 100, the program

c will not be able to cope (due to the dimensioning of the arrays), so

c stop :

c

if (class .gt. 800) then

write(*,*) ’too many clusters, (locating clusters).’

stop

end if

c

c --

c step through the bands, in reverse order :

c

do 100,band=nband,1,-1

c

c --

c decode the peak combination number, to get the relevent set of peak

c numbers :

c

prod(band)=1

do 110,bnd=1,(band-1),1

prod(band)=prod(band)*npeak(bnd)

110 continue

peak(band)=1+(classif/prod(band))

if (peak(band) .eq. (npeak(band)+1)) then

peak(band)=npeak(band)

if (band .eq. 1) peak(band)=peak(band)+1

else if ((band .eq. 1) .and. (peak(band) .eq. 1)) then

peak(band)=npeak(band)+1

peak(band+1)=peak(band+1)-1

do 112,bnd=2,(nband-1),1

if (peak(bnd) .eq. 0) then

peak(bnd)=npeak(bnd)

peak(bnd+1)=peak(bnd+1)-1

end if

112 continue

end if

if (band .eq. 1) then

peak(band)=peak(band)-1

else

classif=count

do 115,bnd=nband,band,-1

classif=classif-(prod(bnd)*(peak(bnd)-1))

115 continue

end if

c

310 Appendix A

c --

c go on to the next spectral band :

c

100 continue

c

c --

c set the elements of the class mean vector to the positons of the set

c of peaks, and the multi-dimensional along-axis cluster half-widths to

c be the along-axis half-widths of the set of peaks :

c

do 120,band=1,nband,1

classave(band,class)=peakpos(band,peak(band))

classwid(band,class)=peakwid(band,peak(band))

120 continue

end if

c

c --

c go on to the next possible class :

c

90 continue

c

c --

c go on to the next block of possible classes :

c

20 continue

c

c --

c set nclass to the number of classes found :

c

nclass=class

c

c --

c write the number of classes found to the screen, and the log file :

c

write(*,*) nclass,’ clusters found in first stage.’

write(9,*) nclass,’ clusters found in first stage.’

c

c --

c initialise class sizes, and new class means and widths :

c

do 285,class=1,nclass,1

classsiz(class)=0.0

do 305,band=1,nband,1

classave2(band,class)=0

classwid2(band,class)=0

305 continue

285 continue

Program Source Code 311

c

c --

c loop over the image :

c

do 282,y=1,ysize,1

do 283,x=1,xsize,1

c

c --

c classify all feature vectors which are within a Euclidean distance of

c ten of the current set of cluster centres :

c

md=1000000.0

do 281,class=1,nclass,1

d=0.0

do 284,band=1,nband,1

itemp=images(x,y,band)

d=d+(classave(band,class)-(itemp+128.0))**2.0

284 continue

d=sqrt(d)

if (d .lt. 10) then

md=d

nc=class

classsiz(nc)=classsiz(nc)+1.0

do 301,band=1,nband,1

itemp=images(x,y,band)

classave2(band,nc)=classave2(band,nc)+(itemp+128.0)

301 continue

end if

281 continue

c

c --

c go on to the next pixel :

c

283 continue

282 continue

c

c --

c divide by class sizes :

c

do 302,class=1,nclass,1

if (classsiz(class) .gt. 0) then

do 303,band=1,nband,1

classave(band,class)=nint(real(classave2(band,class))

& /real(classsiz(class)))

303 continue

end if

302 continue

312 Appendix A

c

c --

c reinitialise the class sizes :

c

do 1482,class=1,nclass,1

classsiz(class)=0.0

1482 continue

c

c --

c loop over the image :

c

do 482,y=1,ysize,1

do 483,x=1,xsize,1

c

c --

c calculate the new class widths, and the cluster covariance matrices,

c based on the new cluster means (again, based on only those feature

c vectors which are within ten of the cluster centres) :

c

md=1000000.0

do 481,class=1,nclass,1

d=0.0

do 484,band=1,nband,1

itemp=images(x,y,band)

d=d+(classave(band,class)-(itemp+128.0))**2.0

484 continue

d=sqrt(d)

if (d .lt. 10) then

md=d

nc=class

classsiz(nc)=classsiz(nc)+1.0

do 1501,band=1,nband,1

itemp=images(x,y,band)

classwid2(band,nc)=classwid2(band,nc)+abs((itemp+128.0)

& -classave(band,nc))

do 1502,bnd=band,nband,1

itemp=images(x,y,band)

div1=(itemp+128)-classave(band,class)

itemp=images(x,y,bnd)

div2=(itemp+128)-classave(bnd,class)

covar(band,bnd,class)=covar(band,bnd,class)

& +(div1*div2)

1502 continue

1501 continue

end if

481 continue

483 continue

Program Source Code 313

482 continue

c

c --

c divide by class sizes :

c

do 502,class=1,nclass,1

if (classsiz(class) .gt. 0) then

do 503,band=1,nband,1

classwid(band,class)=max(1,

& nint((5.0*real(classwid2(band,class)))

& /classsiz(class)))

do 504,bnd=band,nband,1

covar(band,bnd,class)=covar(band,bnd,class)

& /classsiz(class)

covar(bnd,band,class)=covar(band,bnd,class)

504 continue

503 continue

end if

502 continue

c

c --

c loop over the classes :

c

do 507,class=1,nclass,1

c

c --

c copy the covariance matrices :

c

do 803,band=1,nband,1

do 804,bnd=1,nband,1

covar2(bnd,band,class)=covar(bnd,band,class)

804 continue

803 continue

c

c --

c invert the covariance matrices, using eigenvectors and eigenvalues,

c this allows a fiddle which is necessary because of the nature of the

c clusters (having removed the lighting effects, the clusters are

c roughly "flat" in one direction, so it is likely that one of the

c eigenvalues will be zero, and the matrix uninvertable, but, since we

c are using a discrete space, we can replace any zero eigenvectors with

c very small ones) :

c

c find, and sort, the eigenvectors and eigenvalues, using "Numerical

c Recipes" routines :

c

call jacobi(covar(1,1,class),nband,16,eval,evec,nrot)

314 Appendix A

call eigsrt(eval,evec,nband,16)

c

c calculate the diagonal matrix for doing the inversion :

c

do 505,band=1,nband,1

do 506,bnd=1,nband,1

diagn(bnd,band)=0

506 continue

if (eval(band) .gt. 0) then

diagn(band,band)=1.0/eval(band)

else

diagn(band,band)=1.0e+16

end if

505 continue

c

c calculate the inverse matrix :

c

do 509,band=1,nband,1

do 510,bnd=1,nband,1

icovar(bnd,band,class)=0

do 511,nc=1,nband,1

icovar(bnd,band,class)=icovar(bnd,band,class)+

& (diagn(bnd,nc)*evec(band,nc))

511 continue

510 continue

509 continue

do 512,band=1,nband,1

do 513,bnd=1,nband,1

diagn(bnd,band)=0

do 514,nc=1,nband,1

diagn(bnd,band)=diagn(bnd,band)+

& (evec(bnd,nc)*icovar(nc,band,class))

514 continue

513 continue

512 continue

do 515,band=1,nband,1

do 516,bnd=1,nband,1

icovar(bnd,band,class)=diagn(bnd,band)

516 continue

515 continue

c

c --

c copy the covariance matrix back (original has been destroyed during

c inversion) :

c

do 9507,band=1,nband,1

do 9508,bnd=1,nband,1

Program Source Code 315

covar(bnd,band,class)=covar2(bnd,band,class)

9508 continue

9507 continue

c

c --

c go on to the next class :

c

507 continue

c

c --

c sort the class details into size order :

c

call sort4(classsiz,classave,classwid,covar,icovar,

& nclass,nband)

c

c --

c set the threshold which defines the neighbourhood of a cluster

c (n.b. this is a "MAGIC NUMBER", it is not necessarily optimal, and may

c be put under user control) :

c

thresh=1.7

c

c --

c go through the possible permutations of pairs of classes :

c

do 287,class=1,nclass,1

mcs=0.0

do 288,nc=1,nclass,1

c

c --

c calculate the divergence between the two clusters :

c

div=0.0

do 289,band=1,nband,1

do 290,bnd=1,nband,1

div=div+(0.5*((covar(band,bnd,class)-

& covar(band,bnd,nc))*

& (icovar(bnd,band,nc)-icovar(bnd,band,class))))

& +(0.5*((icovar(band,bnd,class)+

& icovar(band,bnd,nc))*

& ((classave(bnd,class)-classave(bnd,nc))*

& (classave(band,class)-classave(band,nc)))))

290 continue

289 continue

c

c --

c change to transformed divergence (with a fudge if the divergence so

316 Appendix A

c how comes out negative [it shouldn’t]) :

c

if (div .ge. 0) then

div=2.0*(1.0-exp(-0.125*div))

else

write(*,*) ’class ’,class,nc,’ divergence is negative !’,div

div=2.0*(1.0-exp(0.125*div))

end if

c

c --

c if the classes are not in the same neighbourhood, go to the next pair

c of classes :

c

if (div .ge. thresh) goto 288

c

c --

c if the two classes are in the same neighbourhood, record whether the

c second is the largest in the neighbourhood of the first :

c

if (classsiz(nc) .gt. mcs) then

mcs=classsiz(nc)

bigc=nc

end if

c

c --

c go on to the next second cluster :

c

288 continue

c

c --

c overwrite the details of the first cluster with those of the largest

c one in its neighbourhood (this may be itself) :

c

do 292,band=1,nband,1

classave(band,class)=classave(band,bigc)

classwid(band,class)=classwid(band,bigc)

do 293,bnd=1,nband,1

covar(bnd,band,class)=covar(bnd,band,bigc)

icovar(bnd,band,class)=icovar(bnd,band,bigc)

293 continue

292 continue

c

c --

c go on to the next first class :

c

287 continue

c

Program Source Code 317

c --

c go through the list of clusters and remove any duplicate entries :

c

count=0

do 294,class=1,nclass,1

do 295,class2=1,count,1

do 296,band=1,nband,1

if (classave(band,class) .ne. classave2(band,class2))

& goto 295

296 continue

goto 294

295 continue

count=count+1

do 297,band=1,nband,1

classave2(band,count)=classave(band,class)

classwid2(band,count)=classwid(band,class)

297 continue

294 continue

do 1294,class=1,count,1

do 1295,band=1,nband,1

classave(band,class)=classave2(band,class)

classwid(band,class)=classwid2(band,class)

1295 continue

1294 continue

c

c --

c reset the number of classes :

c

nclass=count

c

c --

c reinitialise the class sizes :

c

do 6482,class=1,nclass,1

classsiz(class)=0.0

6482 continue

c

c --

c loop over the image :

c

do 5482,y=1,ysize,1

do 5483,x=1,xsize,1

c

c --

c recalculate the class means and widths by classifying on the basis

c of a non-Eucliden (class width modified) distance measure :

c

318 Appendix A

md=1000000.0

do 5481,class=1,nclass,1

d=0.0

do 5484,band=1,nband,1

itemp=images(x,y,band)

d=d+(((classave(band,class)-(itemp+128.0))**2.0)

& /(classwid(band,class)**2.0))

5484 continue

if (d .lt. md) then

md=d

nc=class

end if

5481 continue

classsiz(nc)=classsiz(nc)+1.0

do 6501,band=1,nband,1

itemp=images(x,y,band)

classwid2(band,nc)=classwid2(band,nc)+

& abs((itemp+128.0)-classave(band,nc))

6501 continue

c

c --

c go on to the next pixel :

c

5483 continue

5482 continue

c

c --

c divide by the class sizes :

c

do 5502,class=1,nclass,1

do 5503,band=1,nband,1

classwid(band,class)=nint((7.5*real(classwid2(band,class)))

& /real(classsiz(class)))

5503 continue

5502 continue

c

c --

c sort the class details into size order :

c

call sort3(classsiz,classave,classwid,nclass,nband)

c

c --

c output the number of classes found, and send their mean vectors to the

c log file :

c

1000 write(*,’(1x,i3,1x,a42)’) nclass,’classes left, after discarding n

&on-maxima.’

Program Source Code 319

do 130,class=1,nclass,1

write(9,’(1x,i3,a1,1x,32i5)’) class,’>’,

& (classave(band,class),band=1,nband)

write(9,’(6x,32i5)’) (classwid(band,class),band=1,nband)

130 continue

c

c --

c ==

c --

c the end of the subroutine :

c

return

c

c --

c ##

c ==

c --

c

end

c

c --

c ##

c --

c

320 Appendix A

SORT3 :

c

c +--+

c | This software produced by Philip J. Naylor as part of his Ph.D. |

c | work at King’s College London, 1988-1992. This work was funded |

c | by the SERC and BP Research International. This software comes |

c | with no guarantees, and you use it at your own risk. The author |

c | will probably be prepared to help you out with any problems, if |

c | you can track him down. Philip J. Naylor, July 1992. |

c +--+

c

c --

c ##

c --

c

subroutine sort3(array1,array2,array3,nelem,nband)

c

c **

c * *

c * a subroutine to sort the rows of two arrays with respect to *

c * the elements of a another *

c * (descending order) *

c * [NOT OPTIMAL] *

c * *

c **

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c ==

c integer variables :

c

c band - loop counter for going through the rows

c first - the largest value in the unsorted part

c fst - the position of the largest value in the unsorted

c part

c nband - the number of rows in the arrays

c nelem - the number of elements in the arrays

c pos - loop counter for going through array

c start - start of unsorted portion of array

c temp2 - temporary storage for swapping elements of the second

c array

c temp3 - temporary storage for swapping elements of the third

c array

c

integer nband,pos,temp2,first,start,fst,nelem,band,temp3

c

c --

Program Source Code 321

c integer arrays :

c

c array2 - the second array

c array3 - the third array

c

integer array2(16,800),array3(16,800)

c

c --

c real variables :

c

c temp1 - temporary storage for swapping elements of the first

c array

c

real temp1

c

c --

c real arrays :

c

c array1 - the first (index) array

c

real array1(800)

c

c --

c ==

c ##

c --

c

c

c the start of the subroutine proper :

c

c --

c ==

c --

c start off assuming the whole array is unsorted :

c

start=1

c

c --

c find the minimum element in the unsorted part of the array :

c

20 first=0

do 10,pos=start,nelem,1

if (array1(pos) .gt. first) then

first=array1(pos)

fst=pos

end if

10 continue

322 Appendix A

c

c --

c swap the array elements over, so that the minimum found in the unsorted

c part becomes the last element in the sorted part :

c

temp1=array1(start)

array1(start)=array1(fst)

array1(fst)=temp1

do 30,band=1,nband,1

temp2=array2(band,start)

array2(band,start)=array2(band,fst)

array2(band,fst)=temp2

temp3=array3(band,start)

array3(band,start)=array3(band,fst)

array3(band,fst)=temp3

30 continue

c

c --

c one more element has been placed in the right order :

c

start=start+1

c

c --

c if there are any more elements to sort, go back and do them :

c

if (start .lt. nelem) goto 20

c

c --

c ##

c ==

c --

c the end of the subroutine :

c

return

c

c --

c ==

c --

c

end

c

c --

c ##

c --

c

Program Source Code 323

SORT4 :

c

c +--+

c | This software produced by Philip J. Naylor as part of his Ph.D. |

c | work at King’s College London, 1988-1992. This work was funded |

c | by the SERC and BP Research International. This software comes |

c | with no guarantees, and you use it at your own risk. The author |

c | will probably be prepared to help you out with any problems, if |

c | you can track him down. Philip J. Naylor, July 1992. |

c +--+

c

c --

c ##

c --

c

subroutine sort4(array1,array2,array3,array4,array5,nelem,nband)

c

c **

c * *

c * a subroutine to sort parts of four arrays with respect to *

c * the elements of a another *

c * (descending order) *

c * [NOT OPTIMAL] *

c * *

c **

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c ==

c integer variables :

c

c band - loop counter for going through the rows

c bnd - loop counter for going through another dimension

c first - the largest value in the unsorted part

c fst - the position of the largest value in the unsorted

c part

c nband - the number of rows in the arrays

c nelem - the number of elements in the arrays

c pos - loop counter for going through array

c start - start of unsorted portion of array

c temp2 - temporary storage for swapping elements of the second

c array

c temp3 - temporary storage for swapping elements of the third

c array

c

integer nband,pos,temp2,first,start,fst,nelem,band,temp3,bnd

c

324 Appendix A

c --

c integer arrays :

c

c array2 - the second array

c array3 - the third array

c

integer array2(16,800),array3(16,800)

c

c --

c real variables :

c

c temp1 - temporary storage for swapping elements of the first

c array

c temp4 - temporary storage for swapping elements of the fourth

c array

c temp5 - temporary storage for swapping elements of the fifth

c array

c

real temp1,temp4,temp5

c

c --

c real arrays :

c

c array1 - the first (index) array

c array4 - the fourth array

c array5 - the fifth array

c

real array1(800),array4(16,16,800),array5(16,16,800)

c

c --

c ==

c ##

c --

c

c

c the start of the subroutine proper :

c

c --

c ==

c --

c start off assuming the whole array is unsorted :

c

start=1

c

c --

c find the minimum element in the unsorted part of the array :

c

Program Source Code 325

20 first=0

do 10,pos=start,nelem,1

if (array1(pos) .gt. first) then

first=array1(pos)

fst=pos

end if

10 continue

c

c --

c swap the array elements over, so that the minimum found in the unsorted

c part becomes the last element in the sorted part :

c

temp1=array1(start)

array1(start)=array1(fst)

array1(fst)=temp1

do 30,band=1,nband,1

temp2=array2(band,start)

array2(band,start)=array2(band,fst)

array2(band,fst)=temp2

temp3=array3(band,start)

array3(band,start)=array3(band,fst)

array3(band,fst)=temp3

do 40,bnd=1,nband,1

temp4=array4(bnd,band,start)

array4(bnd,band,start)=array4(bnd,band,fst)

array4(bnd,band,fst)=temp4

temp5=array5(bnd,band,start)

array5(bnd,band,start)=array5(bnd,band,fst)

array5(bnd,band,fst)=temp5

40 continue

30 continue

c

c --

c one more element has been placed in the right order :

c

start=start+1

c

c --

c if there are any more elements to sort, go back and do them :

c

if (start .lt. nelem) goto 20

c

c --

c ##

c ==

c --

c the end of the subroutine :

326 Appendix A

c

return

c

c --

c ==

c --

c

end

c

c --

c ##

c --

c

Program Source Code 327

SEGMENT :

c

c +--+

c | This software produced by Philip J. Naylor as part of his Ph.D. |

c | work at King’s College London, 1988-1992. This work was funded |

c | by the SERC and BP Research International. This software comes |

c | with no guarantees, and you use it at your own risk. The author |

c | will probably be prepared to help you out with any problems, if |

c | you can track him down. Philip J. Naylor, July 1992. |

c +--+

c

c --

c ##

c --

c

subroutine segment(images,xsize,ysize,nband,classave,

& classwid,nclass,segim,dist)

c

c **

c * *

c * a subroutine to segment the image, *

c * in coocurrence space. *

c * *

c **

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c --

c integer variables :

c

c band - band number.

c c - class number.

c class - class number.

c classif - alternative class number.

c direct - cooccurrence direction number.

c dimn - dimension number, in cooccurrence space.

c dist - width of border to leave around edge of image.

c itemp - temporary variable, used to convert byte type to

c integer type.

c limit - the number of classes which will be considered when

c classifying pixels.

c nclass - number of classes.

c nband - number of bands.

c ndimn - the number of dimensions in the cooccurrence space.

c near - the class number of the class that a particular pixel

c most probably belongs to.

c positn - indicates position in an array.

328 Appendix A

c x - loop counter over image (x).

c xsize - image size (x).

c y - loop counter over image (y).

c ysize - image size (y).

c

integer positn,nband,band,dist,xsize,ysize,nclass,class,c

integer ndimn,dimn,x,y,near,direct,limit,itemp

c

c --

c integer arrays :

c

c bound - off diagonal class widths.

c classave - the class mean vectors.

c classes - list of class numbers.

c classwid - along diagonal class widths.

c inten - feature vector.

c nrclass - the classes which are most similar to a class.

c vector - cooccurrence direction vector.

c

integer classave(16,800),classwid(16,800),inten(32),vector(2)

integer nrclass(800,10),classes(800),bound(16)

c

c --

c byte variables :

c

c dummy - dummy argument to pass to dataout.

c

byte dummy

c

c --

c byte arrays :

c

c images - image data.

c segim - segmented image.

c

byte images(xsize,ysize,nband),segim(xsize,ysize)

c

c --

c real variables :

c

c distn - the Eucliden distance between two class mean vectors.

c edge - single edge probability value.

c mahal - non-Euclidean distance from a feature vector to a

c class mean vector (n.b. despite appearances, this is

c NOT the Mahalanobis distance).

c mini - distance to the nearest class mean vector.

c secnear - distance to the second nearest class mean vector.

Program Source Code 329

c

real mini,distn,secnear,mahal,edge,offa

c

c --

c real arrays :

c

c dis - distances from a feature vector to all the class means.

c edges - edge probability image.

c

real dis(800),edges(262144)

c

c --

c ==

c ##

c --

c

c the start of the subroutine proper :

c

c --

c ==

c --

c announce what stage the program has reached :

c

write(*,*) ’ Segmenting the image.’

c

c --

c the number of dimensions in the cooccurrence space is twice that in the

c histogram space :

c

ndimn=2*nband

c

c --

c initialise the segmented image, and edge probability map, arrays :

c

do 1,y=1,ysize,1

do 2,x=1,xsize,1

segim(x,y)=nclass-127

edges(((y-1)*xsize)+x)=0.0

2 continue

1 continue

c

c --

c find the minimum along diagonal class width in each band, to use as the

c off diagonal widths (i.e. all clusters are either circular, or elongated

c along the diagonal) :

c

do 91,band=1,nband,1

330 Appendix A

bound(band)=65536

do 92,class=1,nclass,1

bound(band)=min(bound(band),classwid(band,class))

92 continue

91 continue

c

c --

c if there are more than ten classes, make a list of the ten which are

c most similar to each class :

c

limit=min(10,nclass)

if (limit .eq. nclass) then

do 8,class=1,limit,1

do 9,c=1,limit,1

nrclass(c,class)=class

9 continue

8 continue

else

do 3,class=1,nclass,1

do 4,c=1,nclass,1

if (c .ne. class) then

dis(c)=0

do 5,band=1,nband,1

distn=classave(band,class)-classave(band,c)

dis(c)=dis(c)+(distn*distn)

5 continue

dis(c)=sqrt(dis(c))

end if

4 continue

dis(class)=0.0

do 6,c=1,nclass,1

classes(c)=c

6 continue

call sort2(dis,classes,nclass)

do 7,c=1,10,1

nrclass(class,c)=classes(c)

7 continue

3 continue

end if

c

c --

c loop over the part of the image which was smoothed :

c

do 110,y=(dist+1),(ysize-dist),1

do 120,x=(dist+1),(xsize-dist),1

c

c --

Program Source Code 331

c initialise the the non-Euclidean distance measure :

c

mahal=1.0

c

c --

c loop over the cooccurrence directions :

c

do 80,direct=1,4,1

c

c --

c set the cooccurrence direction vector :

c

vector(1)=min(1,direct-1)

vector(2)=max(-1,direct-3)

c

c --

c calculate the feature vector :

c

do 30,dimn=2,ndimn,2

band=dimn/2

itemp=images(x,y,band)

inten(dimn)=itemp+128

itemp=images(x+vector(1),y+vector(2),band)

inten(dimn-1)=itemp+128

30 continue

c

c --

c rotate it to get the along diagonal, and off diagonal, components :

c

do 40,dimn=2,ndimn,2

inten(dimn-1)=(inten(dimn-1)+inten(dimn))/2

inten(dimn)=inten(dimn-1)-inten(dimn)

40 continue

c

c --

c if the pixel is currently unclassified, check ALL classes to see which

c it best fits :

c

if (segim(x,y) .eq. nclass-127) then

c

c --

c calculate the non-Euclidean distance from the feature vector to each

c cluster centre :

c

c the along diagonal component :

c

do 50,class=1,nclass,1

332 Appendix A

dis(class)=0

do 60,dimn=1,(ndimn-1),2

dis(class)=dis(class)+

& ((1.0*(inten(dimn)-classave((dimn/2)+1,class))

& *(inten(dimn)-classave((dimn/2)+1,class)))

& /(classwid((dimn/2)+1,class)*

& classwid((dimn/2)+1,class)))

60 continue

c

c the off diagonal component :

c

do 65,dimn=2,ndimn,2

dis(class)=dis(class)+

& ((1.0*inten(dimn)*inten(dimn))/

& (bound(band)*bound(band)))

65 continue

50 continue

c

c --

c find the nearest cluster centre :

c

secnear=1000000

mini=1000000

do 70,class=1,nclass,1

if (dis(class) .lt. secnear) secnear=dis(class)

if (dis(class) .lt. mini) then

secnear=mini

mini=dis(class)

near=class

end if

70 continue

c

c --

c classify the pixel :

c

mahal=dis(near)

segim(x,y)=near-128

c

c --

c calculate the empirical edge probability :

c

offa=0.0

do 1000,dimn=2,ndimn,2

offa=offa+(inten(dimn)*inten(dimn))

1000 continue

offa=sqrt(offa)/(0.5*bound(band))

c

Program Source Code 333

c general term :

c

edges(((y-1)*xsize)+x)=min(1.0-exp(log(0.05)*(mini*mini)),

& 1.0-exp(log(0.05)*(offa*offa)))

if ((mini .lt. 1.0) .and. (secnear .lt. 1.0)) then

c

c term for feature vector between two class mean vectors :

c

edges(((y-1)*xsize)+x)=max(edges(((y-1)*xsize)+x),

& (1.0/(1.0+secnear-mini))**8.0)

end if

c

c --

c if the pixel has already been classified, check ONLY the ten classes

c most similar to the one it is already in :

c

else

c

c --

c calculate the non-Euclidean distance from the feature vector to each

c cluster centre :

c

c=segim(x,y)+128

do 150,class=1,limit,1

c

c along diagonal term :

c

dis(nrclass(c,class))=0

do 160,dimn=1,(ndimn-1),2

dis(nrclass(c,class))=dis(nrclass(c,class))+

& ((1.0*(inten(dimn)-

& classave((dimn/2)+1,nrclass(c,class)))

& *(inten(dimn)-classave((dimn/2)+1,nrclass(c,class))))

& /(classwid((dimn/2)+1,nrclass(c,class))*

& classwid((dimn/2)+1,nrclass(c,class))))

160 continue

c

c off diagonal term :

c

do 165,dimn=2,ndimn,2

dis(nrclass(c,class))=dis(nrclass(c,class))+

& ((1.0*inten(dimn)*inten(dimn))/

& (bound(band)*bound(band)))

165 continue

150 continue

c

c --

334 Appendix A

c find the nearest cluster centre :

c

mini=1000000

secnear=1000000

do 170,class=1,limit,1

if (dis(nrclass(c,class)) .lt. secnear)

& secnear=dis(nrclass(c,class))

if (dis(nrclass(c,class)) .lt. mini) then

secnear=mini

mini=dis(nrclass(c,class))

near=nrclass(c,class)

end if

170 continue

c

c --

c if this classification is better than the previous one, use it :

c

if (dis(near) .lt. mahal) then

segim(x,y)=near-128

mahal=dis(near)

end if

c

c --

c calculate the empirical edge probability value :

c

offa=0.0

do 2000,dimn=2,ndimn,2

offa=offa+(inten(dimn)*inten(dimn))

2000 continue

offa=sqrt(offa)/(0.5*bound(band))

c

c general term :

c

edge=min(1.0-exp(log(0.05)*(mini*mini)),

& 1.0-exp(log(0.05)*(offa*offa)))

c

c term for feature vector between two class mean vectors :

c

if ((mini .lt. 1.0) .and. (secnear .lt. 1.0)) then

edge=max(edges(((y-1)*xsize)+x),

& (1.0/(1.0+secnear-mini))**8.0)

end if

c

c --

c if the pixel is more edge-like in this direction, use this probability :

c

if (edge .gt. edges(((y-1)*xsize)+x))

Program Source Code 335

& edges(((y-1)*xsize)+x)=edge

c

c --

c end of the decision about whether or not a pixel is already classified :

c

end if

c

c --

c go on to the next cooccurrence direction :

c

80 continue

c

c --

c go on to the next pixel :

c

120 continue

110 continue

c

c --

c write out the edge probability image to a file :

c

call dataout(’File for edge probability image’,dummy,edges,

& xsize,ysize,1,4)

c

c --

c ==

c --

c the end of the subroutine :

c

return

c

c --

c ##

c ==

c --

c

end

c

c --

c ##

c --

c

336 Appendix A

SORT2 :

c

c +--+

c | This software produced by Philip J. Naylor as part of his Ph.D. |

c | work at King’s College London, 1988-1992. This work was funded |

c | by the SERC and BP Research International. This software comes |

c | with no guarantees, and you use it at your own risk. The author |

c | will probably be prepared to help you out with any problems, if |

c | you can track him down. Philip J. Naylor, July 1992. |

c +--+

c

c --

c ##

c --

c

subroutine sort2(array1,array2,nelem)

c

c **

c * *

c * a subroutine to sort two arrays with respect to the first one *

c * (ascending order) *

c * [NOT OPTIMAL] *

c * *

c **

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c ==

c integer variables :

c

c first - the smallest value in the unsorted part

c fst - the position of the smallest value in the unsorted

c part

c nelem - the number of elements in the arrays

c pos - loop counter for going through array

c start - start of unsorted portion of array

c temp1 - temporary storage for swapping elements of first

c array

c temp2 - temporary storage for swapping elements of second

c array

c

integer pos,temp1,temp2,first,start,fst,nelem

c

c --

c integer arrays :

c

c array1 - the first (index) array

Program Source Code 337

c array2 - the second array

c

integer array1(nelem),array2(nelem)

c

c --

c ==

c ##

c --

c

c

c the start of the subroutine proper :

c

c --

c ==

c --

c start off assuming the whole array is unsorted :

c

start=1

c

c --

c find the minimum element in the unsorted part of the array :

c

20 first=1000000

do 10,pos=start,nelem,1

if (array1(pos) .lt. first) then

first=array1(pos)

fst=pos

end if

10 continue

c

c --

c swap the array elements over, so that the minimum found in the unsorted

c part becomes the last element in the sorted part :

c

temp1=array1(start)

temp2=array2(start)

array1(start)=array1(fst)

array2(start)=array2(fst)

array1(fst)=temp1

array2(fst)=temp2

c

c --

c one more element has been placed in the right order :

c

start=start+1

c

c --

338 Appendix A

c if there are any more elements to sort, go back and do them :

c

if (start .lt. nelem) goto 20

c

c --

c ##

c ==

c --

c the end of the subroutine :

c

return

c

c --

c ==

c --

c

end

c

c --

c ##

c --

c

Program Source Code 339

DATAOUT :

c

c +--+

c | This software produced by Philip J. Naylor as part of his Ph.D. |

c | work at King’s College London, 1988-1992. This work was funded |

c | by the SERC and BP Research International. This software comes |

c | with no guarantees, and you use it at your own risk. The author |

c | will probably be prepared to help you out with any problems, if |

c | you can track him down. Philip J. Naylor, July 1992. |

c +--+

c

c --

c ##

c --

c

subroutine dataout(prompt,images,rimages,xsize,ysize,

& lun,nbytes)

c

c **

c * *

c * a subroutine to write out single band image data. *

c * *

c **

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c --

c integer variables :

c

c band - band number (always 1 in this case).

c lun - logical unit number of file.

c nband - the number of bands (always 1 in this case).

c nbytes - 1 => byte data is to written,

c 4 => real*4 data is to be written.

c num - record number in file.

c positn - position in the image.

c xsize - image size (x).

c ysize - image size (y).

c

integer band,count,nband,nclass,num,lun,nbytes

integer pos,positn,xsize,ysize,bnd

c

c --

c byte arrays :

c

c images - image data of type byte.

c bimages - byte version of real*4 data.

340 Appendix A

c

byte images(512*512*16),bimages(512*512*16)

c

c --

c real variables :

c

c maxm - maximum value in the real data.

c minm - minimum value in the real data.

c

real maxm,minm

c

c --

c real arrays :

c

c rimages - image data of type real*4.

c

real rimages(512*512*16)

c

c --

c logical variables :

c

c again - true if opening or writing a file is to be reattempted

c if an error occured.

c

logical again

c

c --

c character variables :

c

c filename - the name of the file to be written.

c prompt - the prompt to be used when asking for the file name.

c

character filename*80,prompt*(*)

c

c --

c ==

c >>>>>>>>>>>> function declarations <<<<<<<<<<<<

c --

c logical functions :

c

c yes - ’eric’ library routine, used to get a yes or no

c answer to a given question.

c

logical yes

c

c --

c ==

Program Source Code 341

c ##

c --

c

c the start of the subroutine proper :

c

c --

c ==

c --

c get the name of the file :

c

1000 write(*,666) prompt

read(*,’(a)’) filename

666 format(1x,a,’ : ’,$)

c

c --

c set the number of bands (always 1) :

c

nband=1

band=1

c

c --

c if the data is from the byte array :

c

if (nbytes .eq. 1) then

c

c --

c open the file :

c

open (unit=lun,file=filename//’.’//char(band+64),

& access=’direct’,status=’new’,

& organization=’sequential’,recl=128,err=2)

c

c --

c take the 2’s complementation into account :

c

do 96,positn=((band-1)*xsize*ysize)+1,

& (band*xsize*ysize),1

if (images(positn) .lt. 0) then

images(positn)=images(positn)+128

else

images(positn)=images(positn)-128

end if

96 continue

c

c --

c write out the data :

c

342 Appendix A

do 93,num=1,(xsize*ysize)/512,1

write(lun,rec=num,err=4)

& (images(((band-1)*(xsize*ysize))

& +positn),positn=((num-1)*512)+1,num*512)

93 continue

c

c --

c close the file :

c

close(unit=lun)

c

c --

c if the data is from the real*4 array :

c

else if (nbytes .eq. 4) then

c

c --

c initialise the extreme values :

c

maxm=-1.0e+32

minm=1.0e+32

c

c --

c find the extreme values in the data :

c

do 192,band=1,nband,1

do 194,positn=((band-1)*xsize*ysize)+1,

& (band*xsize*ysize),1

maxm=max(maxm,rimages(positn))

minm=min(minm,rimages(positn))

194 continue

192 continue

c

c --

c set the band number (always 1) :

c

band=1

c

c --

c scale the real*4 values into the range -128 to 127, and copy into the

c byte array :

c

do 195,positn=((band-1)*xsize*ysize)+1,

& (band*xsize*ysize),1

rimages(positn)=((rimages(positn)-minm)/

& (maxm-minm))*255.0

bimages(positn)=int(rimages(positn))-128

Program Source Code 343

195 continue

c

c --

c open the file :

c

open (unit=lun,file=filename//’.’//char(band+32),

& access=’direct’,status=’new’,

& organization=’sequential’,recl=128,err=2)

c

c --

c take care of 2’s complementation :

c

do 196,positn=((band-1)*xsize*ysize)+1,

& (band*xsize*ysize),1

if (bimages(positn) .lt. 0) then

bimages(positn)=bimages(positn)+128

else

bimages(positn)=bimages(positn)-128

end if

196 continue

c

c --

c write out the data :

c

do 193,num=1,(xsize*ysize)/512,1

write(lun,rec=num,err=4)

& (bimages(((band-1)*(xsize*ysize))

& +positn),positn=((num-1)*512)+1,num*512)

193 continue

c

c --

c close the file :

c

close(lun)

c

c --

c end of the decision about data type :

c

end if

c

c --

c skip to the end :

c

goto 3000

c

c --

c ##

344 Appendix A

c ==

c --

c code for ’dealing’ with problems which occur whilst handling byte data

c files :

c

2 write(*,*) ’unable to open file ’,filename

again=yes(’try again ? >’,.true.)

if (again) goto 1000

stop

4 write(*,*) ’error in reading from file ’,filename

again=yes(’try again ? >’,.false.)

close(1)

if (again) goto 1000

stop

c

c --

c ==

c --

c

3000 end

c

c --

c ##

c --

c

345

Appendix B
The FORTRAN source code for the implementations of Forgy’s method, and

MacQueen’s k-means.

Both programs have the same main routine (COMPARE) which calls a

single subroutine (CLASSIFY) to do the data analysis. There are two versions

of CLASSIFY, one for Forgy’s method, and one for MacQueen’s k-means.

These programs also use some of the “ERIC” routines mentioned in

appendix A.

346 Appendix B

COMPARE :

c

c --

c ##

c --

c

program compare

c

c **

c * *

c * a general program for data classification. *

c * *

c **

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c --

c integer variables :

c

c class - class number.

c dimn - dimension number.

c sample - sample number.

c nclass - number of classes.

c ndimn - number of dimensions.

c nsample - number of samples.

c

integer dimn,ndimn,nsample,sample,class,nclass

c

c --

c integer arrays :

c

c data - the data.

c

integer data(16,256000)

c

c --

c real arrays :

c

c mean - the class mean vectors.

c

real mean(16,16)

c

c --

c ==

c ##

c --

c

Comparison Program Source Code 347

c the start of the program proper :

c

c --

c ==

c --

c get details of the data set :

c

ndimn=intin(’Number of dimensions >’,8,1,64)

nclass=intin(’Number of classes >’,4,1,64)

nsample=intin(’Number of samples >’,1000,1,1000000)

c

c --

c read in the data :

c

call open(’Data file >’,’data’,’data’,1,’FR’)

do 1,sample=1,nsample,1

read(1,*) (data(dimn,sample),dimn=1,ndimn)

1 continue

close(1)

c

c --

c classify the data, and find the class mean vectors :

c

call classify(data,nsample,ndimn,nclass,mean)

c

c --

c write out the mean vectors :

c

call open(’Means file >’,’data’,’means’,1,’FN’)

do 2,class=1,nclass,1

write(1,*) (mean(dimn,class),dimn=1,ndimn)

2 continue

close(1)

c

c --

c ==

c --

c the end of the program :

c

c --

c ##

c ==

c --

c

end

c

c --

348 Appendix B

c ##

c --

c

Comparison Program Source Code 349

CLASSIFY (Forgy’s method) :

c

c --

c ##

c --

c

subroutine classify(data,nsample,ndimn,nclass,mean)

c

c **

c * *

c * a subroutine to implement a version of Forgy’s method *

c * for custer analysis. *

c * *

c **

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c --

c integer variables :

c

c class - class number.

c dimn - dimension number.

c nclass - number of classes.

c ndimn - number of dimensions.

c nearclass - class number of class closest to a cluster centre.

c nsample - number of samples.

c sample - sample number.

c seed - seed for random number generator.

c

integer sample,nsample,ndimn,dimn,nclass,class,seed,nearclass

c

c --

c integer arrays :

c

c classif - classification of the data points.

c data - the data.

c

integer data(16,256000),classif(256000)

c

c --

c real variables :

c

c dist - Euclidean distance from a feature vector to a cluster

c centre.

c error - mean squared error of feature vectors compared with

c class mean vectors.

c mindist - the minimum distance from a feature vector to a class

350 Appendix B

c mean vector, with respect to class number.

c olderror - the value of error on the previous iteration.

c

real dist,mindist,error,olderror

c

c --

c real arrays :

c

c mean - class mean vectors.

c size - class sizes.

c

real mean(16,16),size(16)

c

c --

c ==

c ##

c --

c

c the start of the subroutine proper :

c

c --

c ==

c --

c set the random number generator seed :

c

seed=272

c

c --

c initialise the ‘old’ mean squared error :

c

olderror=1.0e+32

c

c --

c choose a set of initial, random, class mean vectors :

c

do 2,class=1,nclass,1

do 3,dimn=1,ndimn,1

mean(dimn,class)=ran(seed)*255

3 continue

2 continue

c

c --

c classify the data by minimum Euclidean distance :

c

1000 do 8,sample=1,nsample,1

mindist=1000000

do 9,class=1,nclass,1

Comparison Program Source Code 351

dist=0.0

do 10,dimn=1,ndimn,1

dist=dist+((data(dimn,sample)-mean(dimn,class))**2.0)

10 continue

if (dist .lt. mindist) then

mindist=dist

nearclass=class

end if

9 continue

classif(sample)=nearclass

8 continue

c

c --

c recalculate the class mean vectors :

c

c initialise class means, and sizes :

c

do 12,class=1,nclass,1

size(class)=0.0

do 13,dimn=1,ndimn,1

mean(dimn,class)=0.0

13 continue

12 continue

c

c accumulate means :

c

do 14,sample=1,nsample,1

class=classif(sample)

size(class)=size(class)+1.0

do 15,dimn=1,ndimn,1

mean(dimn,class)=mean(dimn,class)+data(dimn,sample)

15 continue

14 continue

c

c if a class has "vanished" set a new, random, class mean vector, and

c reset olderror, otherwise just divide by the class size :

c

do 16,class=1,nclass,1

if (size(class) .eq. 0) then

do 28,dimn=1,ndimn,1

mean(dimn,class)=ran(seed)*255

28 continue

olderr=1.0e+32

else

do 17,dimn=1,ndimn,1

mean(dimn,class)=mean(dimn,class)/size(class)

17 continue

352 Appendix B

end if

16 continue

c

c --

c calculate the mean squared error of the classification :

c

error=0.0

do 18,sample=1,nsample,1

class=classif(sample)

do 19,dimn=1,ndimn,1

error=error+

& (((data(dimn,sample)-mean(dimn,class))**2.0)/nsample)

19 continue

18 continue

c

c --

c if the error is still decreasing reiterate, otherwise stop :

c

if (int(error*1000) .lt. int(olderror*1000)) then

olderror=error

goto 1000

else

return

end if

c

c --

c ==

c --

c the end of the subroutine :

c

c --

c ##

c ==

c --

c

end

c

c --

c ##

c --

c

Comparison Program Source Code 353

CLASSIFY (MacQueen’s k-means) :

c

c --

c ##

c --

c

subroutine classify(data,nsample,ndimn,nclass,mean)

c

c **

c * *

c * a subroutine to implement a version of MacQueen’s *

c * k-means method for cluster analysis. *

c * *

c **

c

c ==

c >>>>>>>>>>>> variable declarations <<<<<<<<<<<<

c --

c integer variables :

c

c class - class number.

c dimn - dimension number.

c nclass - number of classes.

c ndimn - number of dimesnions.

c nearclass - class number of class closest to a cluster centre.

c nsample - number of samples.

c sample - sample number.

c seed - seed for random number generator.

c

integer sample,nsample,ndimn,dimn,nclass,class,seed,nearclass

c --

c integer arrays :

c

c classif - classification of the data points.

c data - the data.

c

integer data(16,256000),classif(256000)

c

c --

c real variables :

c

c dist - Euclidean distance from a feature vector to a cluster

c centre.

c mindist - the minimum distance from a feature vector to a class

c mean vector, with respect to class number.

c

real dist,mindist

354 Appendix B

c --

c real arrays :

c

c mean - class mean vectors.

c size - class sizes.

c

real mean(16,16),size(16)

c

c --

c ==

c ##

c --

c

c the start of the subroutine proper :

c

c --

c ==

c --

c set the random number generator seed :

c

seed=272

c

c --

c pick a random set of k samples, and use them as the class mean vectors :

c

do 1,class=1,nclass,1

size(class)=0.0

sample=nint(ran(seed)*nsample)

do 2,dimn=1,ndimn,1

mean(dimn,class)=data(dimn,sample)

2 continue

1 continue

c

c --

c classify the data by minimum Euclidean distance :

c

do 8,sample=1,nsample,1

mindist=1000000

do 9,class=1,nclass,1

dist=0.0

do 10,dimn=1,ndimn,1

dist=dist+((data(dimn,sample)-mean(dimn,class))**2.0)

10 continue

if (dist .lt. mindist) then

mindist=dist

nearclass=class

end if

Comparison Program Source Code 355

9 continue

c

c increment the appropriate class size, and adjust the class mean vector :

c

size(nearclass)=size(nearclass)+1.0

do 11,dimn=1,ndimn,1

mean(dimn,nearclass)=

& ((mean(dimn,nearclass)*(size(nearclass)-1.0))+

& data(dimn,sample))/size(nearclass)

11 continue

8 continue

c

c --

c reclassify the data :

c

do 18,sample=1,nsample,1

mindist=1000000

do 19,class=1,nclass,1

dist=0.0

do 110,dimn=1,ndimn,1

dist=dist+((data(dimn,sample)-mean(dimn,class))**2.0)

110 continue

if (dist .lt. mindist) then

mindist=dist

nearclass=class

end if

19 continue

classif(sample)=nearclass

18 continue

c

c --

c initialise the class mean vectors :

c

do 12,class=1,nclass,1

size(class)=0.0

do 13,dimn=1,ndimn,1

mean(dimn,class)=0.0

13 continue

12 continue

c

c --

c accumulate the means :

c

do 14,sample=1,nsample,1

class=classif(sample)

size(class)=size(class)+1.0

do 15,dimn=1,ndimn,1

356 Appendix B

mean(dimn,class)=mean(dimn,class)+data(dimn,sample)

15 continue

14 continue

c

c --

c divide by the class sizes :

c

do 16,class=1,nclass,1

do 17,dimn=1,ndimn,1

mean(dimn,class)=mean(dimn,class)/size(class)

17 continue

16 continue

c

c --

c ==

c --

c the end of the subroutine :

c

return

c

c --

c ##

c ==

c --

c

end

c

c --

c ##

c --

c

357

References

ALI M. & AGGARWAL J.K., Automatic interpretation of infrared aerial color

photographs of citrus orchards having infestations of insect pest and diseases.

IEEE Transactions on Geoscience and Electronics, 15 (3), 1977.

ANDERBERG M.R., Cluster Analysis for Applications. Academic Press, New

York, 1973.

BALL G.H. & HALL D.J., ISODATA, a novel method of data analysis and

pattern classification. Stanford Research Institute, Menlo Park, California,

1965.

BANNINGER C., Remote sensing of a biogeochemical anomaly associated with

a base-metal deposit in the Spanish Pyrite Belt. Proceedings of “Remote Sens-

ing - an operational technology for the mining and petroleum industries.”,

Institute of Mining and Metallurgy, London, 1990.

BARNSLEY M.J., BARR S.L., & SADLER G.J., Spatial re-classification of

remotely-sensed images for urban land-use monitoring. Proceedings of a joint

conference of the Photogrammetric Society, the Remote Sensing Society, & the

American Society for Photogrammetry and Remote Sensing - “Spatial Data

2000.”, Christ Church College, University of Oxford, 1991.

BEDELL R.L., ODINGA M., NIYONDEZO S., NKURIKIYE L.,

FERNANDEZ-ALONSO M., & TREFOIS Ph., Turbidite-hosted Proterozoic

gold exploration in the Kibaran Belt, Burundi, Central Africa. Proceedings of

“Remote Sensing - an operational technology for the mining and petroleum

industries.”, Institute of Mining and Metallurgy, London, 1990.

BESAG J., On the statistical analysis of dirty pictures. Journal of the Royal

Statistical Society, B 48, 1986.

358

BIGGAR M.J. & CONSTANTINIDES A. G., Thin line coding techniques.

Proceedings of an International Conference on Digital Signal Processing, Flo-

rence, Italy, 1987.

BOCCHI S., GALLI A., MORIONDO A., ROSSI B., & TOMASONI R.,

Changes detection in agricultural and urban land use by remote sensing tech-

niques : the metropolitan area of Milan. Proceedings of the 15th Annual

Conference of the Remote Sensing Society - “Remote Sensing for Operational

Applications.”, University of Bristol, 1989.

BRACEWELL R.N., The Fourier Transform and its Applications, 2nd Edi-

tion. McGraw-Hill, New York, 1978.

CANNY J.F., A computational approach to edge detection. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 8 (6), 1986.

CARBON G.E. & EBEL W.J., Co-occurrence matrix modification for small

region texture measurement and comparison. Proceedings of the International

Geoscience And Remote Sensing Symposium - “Remote Sensing : moving to-

wards the 21st century.”, University of Edinburgh, 1988.

CROSS A.M., Deforestation assesment in the Amazon basin using NOAA/

AVHRR data. Proceedings of the 15th Annual Conference of the Remote Sens-

ing Society - “Remote Sensing for Operational Applications.”, University of

Bristol, 1989.

DANSON F.M., STEVEN M.D., MALTHUS T.J., & JAGGARD K.W., Spec-

tral response of sugar beet to water stress. Proceedings of the 16th Annual

Conference of the Remote Sensing Society - “Remote Sensing and Global

Change.”, University College of Swansea, 1990.

FOODY G.M. & COX D.P., Estimation of sub-pixel land cover composition

from spectral mixture models. Proceedings of a joint conference of the Pho-

togrammetric Society, the Remote Sensing Society, & the American Society for

Photogrammetry and Remote Sensing - “Spatial Data 2000.”, Christ Church

College, University of Oxford, 1991.

359

FORGY E.W., Cluster analysis of multivariate data : efficiency versus inter-

pretability of classification. Biometric Society Meetings, Riverside, California,

(abstract in Biometrics, 21 (3)), 1965

FORSYTH D. & ZISSERMAN A., Shape from shading in the light of mutual

illumination. Proceedings of the Fifth Alvey Vision Conference, University of

Reading, 1989.

GOLDBERG M. & SHLIEN S., A clustering scheme for multispectral images.

IEEE Transactions on Systems, Man, and Cybernetics, 8 (2), 1978.

GONZALEZ R.C. & WINTZ P., Digital Image Processing, 2nd Edition.

Addison-Wesley, Reading, Massachusetts, 1987.

HADDON J.F., private correspondence, 1987.

HADDON J.F. & BOYCE J.F., Image segmentation by unifying region and

boundary information. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 12 (10), 1990.

HARALICK R.M., SHANMUGAM K., & DINSTEIN I., Textural features for

image classification. IEEE Transactions on Systems, Man, and Cybernetics,

3 (6), 1973.

HARTLEY H.O., Maximum likelihood estimation from incomplete data. Bio-

metrics, 14, 1958.

HELSTROM C.W., Image restoration by the method of least squares. Journal

of the Optical Society of America, 57 (3), 1967.

HÖGBOM J.A., Aperture synthesis with a non-regular distribution of inter-

ferometer baselines. Astronomy and Astrophysics Supplements, 15, 1974.

HORN B.K.P., Robot Vision. MIT Press, Cambridge, Massachusetts, 1986.

HOUGH P.V.C., Method and means for recognising complex patterns. US

Patent 3069654, 1962.

360

IMAGE PROCESSING magazine (Reed Business Publishing), news item

Imaging tackles drug barons. 4 (1), 1992.

ISO/JTC1/SC2/WG8 N800, International Organisation for Standardisation

- Initial draft for adaptive discrete cosine transform technique for still picture

data compression standard.

JANCEY R.C.,Multidimensional group analysis. Australian Journal of Botany,

14 (1), 1966.

KAUTH R.J. & THOMAS G.S., The tasseled cap - a graphic description of the

spectral-temporal development of agricultural crops as seen by LANDSAT. Pro-

ceedings of the LARS Symposium on Machine Processing of Remotely Sensed

Data, Purdue University, 1976.

KIRKPATRICK S., GELATT C.D., & VECCHI M.P., Optimization by sim-

ulated annealing. Science, 220, 1983.

KUNDU A., MITRA S.K., & VAIDYANATHAN P.P, Application of two-

dimensional generalized mean filtering for removal of impulsive noises from

images. IEEE Transactions on Acoustics, Speech, and Signal Processing, 32

(3), 1984.

LAND E.H., The retinex theory of color vision. Scientific American, 237

(6), 1977.

LEE Y.H. & KASSAM S.A., Generalized median filtering and related nonlin-

ear filtering techniques. IEEE Transactions on Acoustics, Speech, and Signal

Processing, 33 (3), 1985.

LEE Y.-H. & TANTARATANA S., Decision-based order statistic filters. IEEE

Transactions on Acoustics, Speech, and Signal Processing, 38 (3), 1990.

LETTS P.A., Unsupervised classification in the Aries image analysis system.

Proceedings of the 5th Canadian Symposium on Remote Sensing, 1978.

361

LOUGHLIN W.P., Geological exploration in the western United States by use

of airbourne scanner imagery. Proceedings of “Remote Sensing - an opera-

tional technology for the mining and petroleum industries.”, Institute of Min-

ing and Metallurgy, London, 1990.

MACQUEEN J.B., Some methods for classification and analysis of multivari-

ate observations. Proceedings of a Symposium on Mathematics, Statistics,

and Probability, University of California at Berkeley, 1967.

MALTHUS T.J., ANDRIEU B., BARET F., CLARK J.A., DANSON F.M.,

JAGGARD K.W., & STEVEN M.D., Candidate high spectral resolution in-

frared indices for the prediction of crop cover. Proceedings of the 16th An-

nual Conference of the Remote Sensing Society - “Remote Sensing and Global

Change.”, University College of Swansea, 1990.

MORAN D. & MORRIS O.J., Region and texture coding of TV pictures. Pro-

ceedings of the IEE 3rd International Conference on Image Processing and its

Applications, University of Warwick, 1989.

MUIRHEAD K. & CRACKNELL A.P., Gas flares and forest fires - the poten-

tial of AVHRR band 3. Proceedings of the 10th Anniversary Conference of the

Remote Sensing Society - “Satellite Remote Sensing - Review and Preview.”,

University of Reading, 1984.

MURTAGH F., Multivariate analysis methods. in “Pattern Recognition and

Image Processing in Physics.” - Proceedings of the 37th Scottish Universities

Summer School in Physics, (edited by R.A. Vaughan), Adam Hilger, Bristol,

1990.

NAYLOR P.J., M.Sc. thesis - Towards the easy processing of images pro-

duced by radio interferometers. University of Manchester, 1988.

NRSC PAMPHLET G 06, Applications of radar imagery to geological stud-

ies. National Remote Sensing Centre, Farnborough, Hampshire, 1986.

PETROU M., Optimal edges detectors for linear features with finite width.

One day meeting on Automated Techniques for Feature Extraction from Im-

362

agery, NERC Unit for Thematic Information Systems, University of Reading,

1989.

POLAK E., Computational Methods in Optimization. Academic Press, New

York, 1971.

PRATT W.K., Digital Image Processing, 2nd Edition. John Wiley & Sons,

New York, 1991.

PRESSW.H., FLANNERY B.P., TEUKOLSKY S.A., & VETTERLINGW.T.,

Numerical Recipes, The Art of Scientific Computing. Cambridge University

Press, Cambridge, 1986.

RABE S., Ph.D. thesis - The Ising model as a model for texture in image

analysis. University of London, 1991.

RICHARDS J.A., Remote Sensing Digital Image Analysis, An Introduction.

Springer-Verlag, Berlin, 1986.

RUIZ R.M., ELLIOTT D.A., YAGI G.M., POMPHREY R.B., POWER M.A.,

FARRELL K.W., LORRE J.J., BENTON W.D., DEWAR R.E., & CULLEN

L.E., IPL processing of the Viking orbiter images of Mars. Journal of Geo-

physical Research, 82 (28), 1977.

SABINS F.F., Remote Sensing : Principles and Interpretation, 2nd Edition.

W.H. Freeman, New York, 1987.

SACKS O., The Man Who Mistook his Wife for a Hat. Picador (Pan books),

1986.

SEZAN M.I., A peak detection algorithm and its application to histogram-based

image data reduction. Computer Vision, Graphics, and Image Processing, 49

(1), 1990.

SHARMAN M., Monitoring European agriculture by remote sensing : Ac-

tion 4 : “Rapid estimates” of the JRC’s pilot project. Proceedings of the 15th

Annual Conference of the Remote Sensing Society - “Remote Sensing for Op-

363

erational Applications.”, University of Bristol, 1989.

SINGH A., Detecting changes in tropical forest cover due to shifting cultivation

using LANDSAT MSS data. Proceedings of the 10th Anniversary Conference

of the Remote Sensing Society - “Satellite Remote Sensing - Review and Pre-

view.”, University of Reading, 1984.

SMITH G.M. & VAUGHAN R.A., A heat source monitoring system and its

application to strawburning in the UK. Proceedings of a joint conference of the

Photogrammetric Society, the Remote Sensing Society, & the American Soci-

ety for Photogrammetry and Remote Sensing - “Spatial Data 2000.”, Christ

Church College, University of Oxford, 1991.

SPACEK L.A., Edge detection and motion detection. Image and Vision Com-

puting, 4, 1986.

STAVTSER A.L. & KARASEV O.I., New methods and technologies for fore-

casting onshore and offshore oil and gas fields. Proceedings of “Remote Sens-

ing - an operational technology for the mining and petroleum industries.”,

Institute of Mining and Metallurgy, London, 1990.

STEFOULI M. & OSMASTON H.A., The remote sensing of geological lin-

ear features using LANDSAT : matching analytical approaches to practical

applications. Proceedings of the 10th Anniversary Conference of the Remote

Sensing Society - “Satellite Remote Sensing - Review and Preview.”, Univer-

sity of Reading, 1984.

STONE R.J., Application of remote sensing to material resource location in de-

veloping countries. Proceedings of the 15th Annual Conference of the Remote

Sensing Society - “Remote Sensing for Operational Applications.”, University

of Bristol, 1989.

SWAIN P.H. & DAVIS S.M. (editors), Remote Sensing : The Quantitative

Approach. McGraw-Hill, New York, 1978.

WRIGHT W.D., The Measurement of Colour, 4th Edition, Adam Hilger, Lon-

don, 1969.

364

XU R., XU H., YE S., LU H., & ZHANG L., Geobotanical remote sensing

in China. Proceedings of “Remote Sensing - an operational technology for

the mining and petroleum industries.”, Institute of Mining and Metallurgy,

London, 1990.

ZHANG J. & MODESTINO J.W., A model fitting approach to cluster val-

idation with application to stochastic model-based image segmentation. IEEE

Pattern Analysis and Machine Intelligence, 12 (10), 1990.

